83
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Selection and Validation of Reference Genes for Gene Expression Analysis in Switchgrass ( Panicum virgatum) Using Quantitative Real-Time RT-PCR

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Switchgrass ( Panicum virgatum) has received a lot of attention as a forage and bioenergy crop during the past few years. Gene expression studies are in progress to improve new traits and develop new cultivars. Quantitative real time PCR (qRT-PCR) has emerged as an important technique to study gene expression analysis. For accurate and reliable results, normalization of data with reference genes is essential. In this work, we evaluate the stability of expression of genes to use as reference for qRT-PCR in the grass P. virgatum. Eleven candidate reference genes, including eEF-1α, UBQ6, ACT12, TUB6, eIF-4a, GAPDH, SAMDC, TUA6, CYP5, U2AF, and FTSH4, were validated for qRT-PCR normalization in different plant tissues and under different stress conditions. The expression stability of these genes was verified by the use of two distinct algorithms, geNorm and NormFinder. Differences were observed after comparison of the ranking of the candidate reference genes identified by both programs but eEF-1α, eIF-4a, CYP5 and U2AF are ranked as the most stable genes in the samples sets under study. Both programs discard the use of SAMDC and TUA6 for normalization. Validation of the reference genes proposed by geNorm and NormFinder were performed by normalization of transcript abundance of a group of target genes in different samples. Results show similar expression patterns when the best reference genes selected by both programs were used but differences were detected in the transcript abundance of the target genes. Based on the above research, we recommend the use of different statistical algorithms to identify the best reference genes for expression data normalization. The best genes selected in this study will help to improve the quality of gene expression data in a wide variety of samples in switchgrass.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants.

          Reverse transcription-polymerase chain reaction (RT-PCR) approaches have been used in a large proportion of transcriptome analyses published to date. The accuracy of the results obtained by this method strongly depends on accurate transcript normalization using stably expressed genes, known as references. Statistical algorithms have been developed recently to help validate reference genes, and most studies of gene expression in mammals, yeast and bacteria now include such validation. Surprisingly, this important approach is under-utilized in plant studies, where putative housekeeping genes tend to be used as references without any appropriate validation. Using quantitative RT-PCR, the expression stability of several genes commonly used as references was tested in various tissues of Arabidopsis thaliana and hybrid aspen (Populus tremula x Populus tremuloides). It was found that the expression of most of these genes was unstable, indicating that their use as references is inappropriate. The major impact of the use of such inappropriate references on the results obtained by RT-PCR is demonstrated in this study. Using aspen as a model, evidence is presented indicating that no gene can act as a universal reference, implying the need for a systematic validation of reference genes. For the first time, the extent to which the lack of a systematic validation of reference genes is a stumbling block to the reliability of results obtained by RT-PCR in plants is clearly shown.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Net energy of cellulosic ethanol from switchgrass.

            Perennial herbaceous plants such as switchgrass (Panicum virgatum L.) are being evaluated as cellulosic bioenergy crops. Two major concerns have been the net energy efficiency and economic feasibility of switchgrass and similar crops. All previous energy analyses have been based on data from research plots (<5 m2) and estimated inputs. We managed switchgrass as a biomass energy crop in field trials of 3-9 ha (1 ha = 10,000 m2) on marginal cropland on 10 farms across a wide precipitation and temperature gradient in the midcontinental U.S. to determine net energy and economic costs based on known farm inputs and harvested yields. In this report, we summarize the agricultural energy input costs, biomass yield, estimated ethanol output, greenhouse gas emissions, and net energy results. Annual biomass yields of established fields averaged 5.2-11.1 Mg x ha(-1) with a resulting average estimated net energy yield (NEY) of 60 GJ x ha(-1) x y(-1). Switchgrass produced 540% more renewable than nonrenewable energy consumed. Switchgrass monocultures managed for high yield produced 93% more biomass yield and an equivalent estimated NEY than previous estimates from human-made prairies that received low agricultural inputs. Estimated average greenhouse gas (GHG) emissions from cellulosic ethanol derived from switchgrass were 94% lower than estimated GHG from gasoline. This is a baseline study that represents the genetic material and agronomic technology available for switchgrass production in 2000 and 2001, when the fields were planted. Improved genetics and agronomics may further enhance energy sustainability and biofuel yield of switchgrass.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis.

              Real-time PCR is being used increasingly as the method of choice for mRNA quantification, allowing rapid analysis of gene expression from low quantities of starting template. Despite a wide range of approaches, the same principles underlie all data analysis, with standard approaches broadly classified as either absolute or relative. In this study we use a variety of absolute and relative approaches of data analysis to investigate nocturnal c-fos expression in wild-type and retinally degenerate mice. In addition, we apply a simple algorithm to calculate the amplification efficiency of every sample from its amplification profile. We confirm that nocturnal c-fos expression in the rodent eye originates from the photoreceptor layer, with around a 5-fold reduction in nocturnal c-fos expression in mice lacking rods and cones. Furthermore, we illustrate that differences in the results obtained from absolute and relative approaches are underpinned by differences in the calculated PCR efficiency. By calculating the amplification efficiency from the samples under analysis, comparable results may be obtained without the need for standard curves. We have automated this method to provide a means of streamlining the real-time PCR process, enabling analysis of experimental samples based upon their own reaction kinetics rather than those of artificial standards.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                12 March 2014
                : 9
                : 3
                : e91474
                Affiliations
                [1]Department of Plant Sciences, University of California Davis, Davis, California, United States of America
                Nazarbayev University, Kazakhstan
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JG. Performed the experiments: JG. Analyzed the data: JG. Contributed reagents/materials/analysis tools: AV EB. Wrote the paper: JG. Responsible for the biological assays and carrying out the tissue collections and sample preparation: JG NE. Supervised the study and critically revised the manuscript: AV EB.

                [¤]

                Current address: Department of Plant Pathology, University of California Davis, Davis, California, United States of America

                Article
                PONE-D-13-48931
                10.1371/journal.pone.0091474
                3951385
                24621568
                d4c9c58b-d505-4754-8e5e-81da326f48dc
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 November 2013
                : 12 February 2014
                Page count
                Pages: 12
                Funding
                Funding came from the University of California Discovery Grants. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Agriculture
                Agricultural Biotechnology
                Biofuels
                Crops
                Biology
                Biochemistry
                Biotechnology
                Plant Biotechnology
                Computational Biology
                Molecular Genetics
                Gene Identification and Analysis
                Gene Expression
                Sequence Analysis
                Genetics
                Gene Expression
                Plant Genetics
                Plant Science
                Plant Genetics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article