Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combining Topological Hardware and Topological Software: Color Code Quantum Computing with Topological Superconductor Networks

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes, and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and present protocols for realizing topologically protected Clifford gates. These hexagonal cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome readout and logical \(T\)-gates via magic state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but could also be realized in alternative settings such as quantum Hall-superconductor hybrids.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices

          Majorana fermions are particles identical to their own antiparticles. They have been theoretically predicted to exist in topological superconductors. We report electrical measurements on InSb nanowires contacted with one normal (Au) and one superconducting electrode (NbTiN). Gate voltages vary electron density and define a tunnel barrier between normal and superconducting contacts. In the presence of magnetic fields of order 100 mT we observe bound, mid-gap states at zero bias voltage. These bound states remain fixed to zero bias even when magnetic fields and gate voltages are changed over considerable ranges. Our observations support the hypothesis of Majorana fermions in nanowires coupled to superconductors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Superconducting proximity effect and Majorana fermions at the surface of a topological insulator

            We study the proximity effect between an s-wave superconductor and the surface states of a strong topological insulator. The resulting two dimensional state resembles a spinless p_x+ip_y superconductor, but does not break time reversal symmetry. This state supports Majorana bound states at vortices. We show that linear junctions between superconductors mediated by the topological insulator form a non chiral 1 dimensional wire for Majorana fermions, and that circuits formed from these junctions provide a method for creating, manipulating and fusing Majorana bound states.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Non-Abelian Anyons and Topological Quantum Computation

              Topological quantum computation has recently emerged as one of the most exciting approaches to constructing a fault-tolerant quantum computer. The proposal relies on the existence of topological states of matter whose quasiparticle excitations are neither bosons nor fermions, but are particles known as {\it Non-Abelian anyons}, meaning that they obey {\it non-Abelian braiding statistics}. Quantum information is stored in states with multiple quasiparticles, which have a topological degeneracy. The unitary gate operations which are necessary for quantum computation are carried out by braiding quasiparticles, and then measuring the multi-quasiparticle states. The fault-tolerance of a topological quantum computer arises from the non-local encoding of the states of the quasiparticles, which makes them immune to errors caused by local perturbations. To date, the only such topological states thought to have been found in nature are fractional quantum Hall states, most prominently the \nu=5/2 state, although several other prospective candidates have been proposed in systems as disparate as ultra-cold atoms in optical lattices and thin film superconductors. In this review article, we describe current research in this field, focusing on the general theoretical concepts of non-Abelian statistics as it relates to topological quantum computation, on understanding non-Abelian quantum Hall states, on proposed experiments to detect non-Abelian anyons, and on proposed architectures for a topological quantum computer. We address both the mathematical underpinnings of topological quantum computation and the physics of the subject using the \nu=5/2 fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.
                Bookmark

                Author and article information

                Journal
                2017-04-05
                Article
                1704.01589
                d4ef9fc5-7671-4d73-b710-f9d62b1ef0a4

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                23 pages, 24 figures
                cond-mat.mes-hall quant-ph

                Quantum physics & Field theory,Nanophysics
                Quantum physics & Field theory, Nanophysics

                Comments

                Comment on this article