6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Engineering Three-Dimensional Tumor Models to Study Glioma Cancer Stem Cells and Tumor Microenvironment

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glioblastoma (GBM) is the most common and devastating primary brain tumor, leading to a uniform fatality after diagnosis. A major difficulty in eradicating GBM is the presence of microscopic residual infiltrating disease remaining after multimodality treatment. Glioma cancer stem cells (CSCs) have been pinpointed as the treatment-resistant tumor component that seeds ultimate tumor progression. Despite the key role of CSCs, the ideal preclinical model to study the genetic and epigenetic landmarks driving their malignant behavior while simulating an accurate interaction with the tumor microenvironment (TME) is still missing. The introduction of three-dimensional (3D) tumor platforms, such as organoids and 3D bioprinting, has allowed for a better representation of the pathophysiologic interactions between glioma CSCs and the TME. Thus, these technologies have enabled a more detailed study of glioma biology, tumor angiogenesis, treatment resistance, and even performing high-throughput screening assays of drug susceptibility. First, we will review the foundation of glioma biology and biomechanics of the TME, and then the most up-to-date insights about the applicability of these new tools in malignant glioma research.

          Related collections

          Most cited references186

          • Record: found
          • Abstract: found
          • Article: not found

          Cerebral organoids model human brain development and microcephaly

          The complexity of the human brain has made it difficult to study many brain disorders in model organisms, and highlights the need for an in vitro model of human brain development. We have developed a human pluripotent stem cell-derived 3D organoid culture system, termed cerebral organoid, which develops various discrete though interdependent brain regions. These include cerebral cortex containing progenitor populations that organize and produce mature cortical neuron subtypes. Furthermore, cerebral organoids recapitulate features of human cortical development, namely characteristic progenitor zone organization with abundant outer radial glial stem cells. Finally, we use RNAi and patient-specific iPS cells to model microcephaly, a disorder that has been difficult to recapitulate in mice. We demonstrate premature neuronal differentiation in patient organoids, a defect that could explain the disease phenotype. Our data demonstrate that 3D organoids can recapitulate development and disease of even this most complex human tissue.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The extracellular matrix at a glance.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Organoid cultures derived from patients with advanced prostate cancer.

              The lack of in vitro prostate cancer models that recapitulate the diversity of human prostate cancer has hampered progress in understanding disease pathogenesis and therapy response. Using a 3D organoid system, we report success in long-term culture of prostate cancer from biopsy specimens and circulating tumor cells. The first seven fully characterized organoid lines recapitulate the molecular diversity of prostate cancer subtypes, including TMPRSS2-ERG fusion, SPOP mutation, SPINK1 overexpression, and CHD1 loss. Whole-exome sequencing shows a low mutational burden, consistent with genomics studies, but with mutations in FOXA1 and PIK3R1, as well as in DNA repair and chromatin modifier pathways that have been reported in advanced disease. Loss of p53 and RB tumor suppressor pathway function are the most common feature shared across the organoid lines. The methodology described here should enable the generation of a large repertoire of patient-derived prostate cancer lines amenable to genetic and pharmacologic studies. Copyright © 2014 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                16 October 2020
                2020
                : 14
                : 558381
                Affiliations
                [1] 1Department of Radiation Oncology, Mayo Clinic , Jacksonville, FL, United States
                [2] 2Department of Neurological Surgery, Mayo Clinic , Jacksonville, FL, United States
                Author notes

                Edited by: Ulises Gomez-Pinedo, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Spain

                Reviewed by: Hiroaki Wakimoto, Massachusetts General Hospital and Harvard Medical School, United States; Tullio Florio, University of Genoa, Italy; Luca Persano, University of Padua, Italy

                *Correspondence: Daniel M. Trifiletti trifiletti.daniel@ 123456mayo.edu

                This article was submitted to Cellular Neuropathology, a section of the journal Frontiers in Cellular Neuroscience

                Article
                10.3389/fncel.2020.558381
                7596188
                33177991
                d5888985-d45d-4c7d-ac75-4bfbce0d7bd1
                Copyright © 2020 Ruiz-Garcia, Alvarado-Estrada, Schiapparelli, Quinones-Hinojosa and Trifiletti.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 May 2020
                : 24 August 2020
                Page count
                Figures: 5, Tables: 2, Equations: 0, References: 186, Pages: 21, Words: 17015
                Categories
                Cellular Neuroscience
                Review

                Neurosciences
                glioma,tumor microenvironment,stem cell,bioprinting,organoids,organ-on-a-chip,tissue engineering,spheroids

                Comments

                Comment on this article