10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The role of long-distance seed dispersal in the local population dynamics of an invasive plant species : Quantifying long-distance dispersal

      , , , ,
      Diversity and Distributions
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of long-distance seed dispersal.

          Growing recognition of the importance of long-distance dispersal (LDD) of plant seeds for various ecological and evolutionary processes has led to an upsurge of research into the mechanisms underlying LDD. We summarize these findings by formulating six generalizations stating that LDD is generally more common in open terrestrial landscapes, and is typically driven by large and migratory animals, extreme meteorological phenomena, ocean currents and human transportation, each transporting a variety of seed morphologies. LDD is often associated with unusual behavior of the standard vector inferred from plant dispersal morphology, or mediated by nonstandard vectors. To advance our understanding of LDD, we advocate a vector-based research approach that identifies the significant LDD vectors and quantifies how environmental conditions modify their actions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long-distance seed dispersal in plant populations.

            Long-distance seed dispersal influences many key aspects of the biology of plants, including spread of invasive species, metapopulation dynamics, and diversity and dynamics in plant communities. However, because long-distance seed dispersal is inherently hard to measure, there are few data sets that characterize the tails of seed dispersal curves. This paper is structured around two lines of argument. First, we argue that long-distance seed dispersal is of critical importance and, hence, that we must collect better data from the tails of seed dispersal curves. To make the case for the importance of long-distance seed dispersal, we review existing data and models of long-distance seed dispersal, focusing on situations in which seeds that travel long distances have a critical impact (colonization of islands, Holocene migrations, response to global change, metapopulation biology). Second, we argue that genetic methods provide a broadly applicable way to monitor long-distance seed dispersal; to place this argument in context, we review genetic estimates of plant migration rates. At present, several promising genetic approaches for estimating long-distance seed dispersal are under active development, including assignment methods, likelihood methods, genealogical methods, and genealogical/demographic methods. We close the paper by discussing important but as yet largely unexplored areas for future research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Why trees migrate so fast: confronting theory with dispersal biology and the paleorecord.

              Reid's paradox describes the fact that classical models cannot account for the rapid (10(2)-10(3) m yr-1) spread of trees at the end of the Pleistocene. I use field estimates of seed dispersal with an integrodifference equation and simulation models of population growth to show that dispersal data are compatible with rapid spread. Dispersal estimates lay to rest the possibility that rapid spread occurred by diffusion. The integrodifference model predicts that, if the seed shadow has a long 'fat' tail, then rapid spread is possible, despite short average dispersal distances. It further predicts that velocity is more sensitive to life history than is classical diffusion. Application of such models is frustrated because the tail of the seed shadow cannot be fitted to data. However, the data can be used to test a 'long-distance' hypothesis against alternative ('local') models of dispersal using Akaike's Information Criterion and likelihood ratio tests. Tests show that data are consistent with >10% of seed dispersed as a long (10(2) m) fat-tailed kernel. Models based on such kernels predict spread as rapid as that inferred from the pollen record. If fat-tailed dispersal explains these rapid rates, then it is surprising not to see large differences in velocities among taxa with contrasting life histories. The inference of rapid spread, together with lack of obvious life-history effects, suggests velocities may have not reached their potentials, being stalled by rates of climate change, geography, or both.
                Bookmark

                Author and article information

                Journal
                Diversity and Distributions
                Wiley-Blackwell
                13669516
                July 2011
                July 2011
                : 17
                : 4
                : 725-738
                Article
                10.1111/j.1472-4642.2011.00771.x
                d5a0a85e-7e24-49d3-8c19-320a9576f29a
                © 2011

                http://doi.wiley.com/10.1002/tdm_license_1

                History

                Comments

                Comment on this article