3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Influence of KRAS mutations, persistent organic pollutants, and trace elements on survival from pancreatic ductal adenocarcinoma

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          Whole genomes redefine the mutational landscape of pancreatic cancer.

          Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals.

            The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Subtypes of Pancreatic Ductal Adenocarcinoma and Their Differing Responses to Therapy

              Pancreatic ductal adenocarcinoma (PDA) is a lethal disease. Overall survival is typically six months from diagnosis 1 . Numerous phase III trials of agents effective in other malignancies have failed to benefit unselected PDA populations, although patients do occasionally respond. Studies in other solid tumors have shown that heterogeneity in response is determined, in part, by molecular differences between tumors. Further, treatment outcomes are improved by targeting drugs to tumor subtypes in which they are selectively effective, with breast 2 and lung 3 cancers providing recent examples. Identification of PDA molecular subtypes has been frustrated by a paucity of tumor specimens available for study. We have overcome this problem by combined analysis of transcriptional profiles of primary PDA samples from several studies along with human and mouse PDA cell lines. We define three PDA subtypes: classical, quasi-mesenchymal, and exocrine-like, and present evidence for clinical outcome and therapeutic response differences between them. We further define gene signatures for these subtypes that may have utility in stratifying patients for treatment and present preclinical model systems that may be used to identify new subtype specific therapies. Global gene expression analysis has proved useful for subtype identification in many human tumor types 4 . We approached PDA subtype identification by first identifying intrinsically variable (standard deviation > 0.8) genes in two gene expression microarray datasets from resected PDA. We generated one dataset using microdissected PDA material (UCSF tumors, n=27) from clinical samples for which information on survival duration was available and the second was previously published (Badea, et al.) 5 . To increase power, we merged these two datasets using the distance weighted discrimination (DWD) method 6,7 and included intrinsically variable genes common to both studies. We then performed nonnegative matrix factorization (NMF) analysis with consensus clustering 8 to identify subtypes of the disease. This analysis supported up to three subtypes (cophenetic coefficient >0.99; Supplementary Figs. 1, 2a and Supplementary Tables 1–3). We then developed a gene signature by using subtypes defined in NMF analysis of the merged clinical datasets to supervise significance analysis of microarrays (SAM) analysis 9 with false discovery rate (FDR) less than 0.001. This resulted in a 62 gene signature, designated PDAssigner. The three PDA subtypes in the merged clinical dataset and their expression of PDAssigner genes are shown in Fig. 1a. We designated these subtypes as classical, quasi-mesenchymal (QM-PDA) and exocrine-like, based on our interpretation of subtype specific gene expression. The classical subtype had high expression of adhesion-associated and epithelial genes, the QM-PDA subtype showed high expression of mesenchyme associated genes. The exocrine-like subtype showed relatively high expression of tumor cell derived digestive enzyme genes, with immunohistochemical staining supporting this observation (Supplementary Fig. 3). Analysis of PDAssigner gene expression in three additional published PDA expression datasets of unique origin, platform or processing 10–12 also supported these three subtypes (Supplementary Fig. 4) demonstrating the robust nature of the subtype classification in early stage PDA. Survival after PDA resection has been associated with many factors including stage (tumor size and nodal involvement) and grade (degree of differentiation) 13 , but no one factor has been consistently prognostic 14,15 . We found that stratification by PDA transcriptional subtype provided useful prognostic information in one PDA dataset (UCSF) for which clinical annotation was available. Specifically, patients with classical subtype tumors fared better than patients with QM-PDA subtype tumors after resection (p=0.038, log rank, Fig. 1b). In this same data set, stage and grade were not significantly related (p>0.99), stage was not significantly associated with subtype (p=0.40), while grade was (p=0.041) (univariate analyses). In a multivariate Cox regression model including stage and subtype, subtype was an independent predictor of overall survival (p=0.024) indicating that PDA subtype independently contributed prognostic information to pathological staging in PDA. Associations of PDA subtype with other clinical variables are summarized in Supplementary Table 4. This analysis supports the use of subtypes (as defined using PDAssigner) as an independent prognostic indicator in resected PDA. Further validation of PDA subtypes and preclinical identification of subtype specific therapeutic agents would be facilitated by the availability of laboratory models of the subtypes. Therefore, we asked if the PDA subtypes were represented in a collection of 19 human and 15 mouse PDA cell lines. The 19 human PDA cell lines were selected from publicly available PDA lines while the 15 mouse lines were derived by us from genetically engineered Tp53 −/− and INK4A −/−16 models of PDA. The analyses of the human and mouse PDA cell lines using the 62 PDAssigner genes are shown in Fig. 1c,d, as well as in Supplementary Figs. 2b–e. Supplementary Tables 5 and 6. These cell line collections contain representatives of the classical and QM-PDA subtypes, but not the exocrine-like subtype. The absence of the exocrine-like subtype in the cell line collection raises the possibility that this subtype is an artifact of contaminating normal pancreas tissue adjacent to tumor. However, the UCSF samples were prepared by microdissection to enrich for PDA cancer cells thereby minimizing contaminating tumor-associated stroma and/or adjacent normal exocrine pancreas. This dataset includes the exocrine-like subtype, which argues that it is a bona fide PDA subtype. Thus, we conclude that the cell line collections model two of the PDA subtypes thereby enabling exploration of biological differences between these two PDA subtypes and may facilitate screening for classical and QM-PDA subtype-specific therapeutic agents and biological properties. Two genes associated with PDA subtypes, GATA binding protein 6 (GATA6) and v-ki-ras2 kirsten rat sarcoma viral oncogene homolog (KRAS), two variable genes in our UCSF PDA dataset, Supplementary Table 1a), have been implicated in both aspects of normal development and cancer pathophysiology in published studies. GATA-family transcription factors are associated with tissue specific differentiation and have been demonstrated to be subtype specific markers in other cancers. For example, GATA binding protein 3 (GATA3) is required for luminal differentiation in the breast 17 , and high GATA3 characterizes luminal subtype breast cancers 18 . Likewise, GATA6 is essential for pancreatic development 19 and has been implicated in PDA 20,21 . GATA6 is highly expressed in most classical subtype tumors and cell lines, and comparatively low in the QM-PDA cell lines and tumors. Additionally, a previously published gene signature associated with GATA6 overexpression 20 is enriched in the classical subtype (Supplementary Fig. 5). Seeking to establish a possible functional role underlying the observed differences in GATA6 expression, we assessed the impact of GATA6-directed RNAi knockdown on colony formation in soft agar in the classical and QM-PDA cell lines. GATA6 depletion impaired anchorage-independent growth in classical PDA cell lines, but not in QM-PDA cell lines (Fig. 2), consistent with a functional, subtype-specific role for this transcription factor in the classical PDA subtype. Recent work in the mouse demonstrates that PDA can arise from a variety of precursor cells by activating KRAS in distinct cellular compartments of the pancreas 22 . Others have found that cancer cell lines harboring mutant KRAS differ in their dependence on KRAS 23 . These findings imply plasticity in either reliance on KRAS signaling or a cell-type specific role for mutant KRAS in different cells of origin/lineages in PDA, or both. They further suggested to us that despite KRAS mutation in most PDAs, KRAS dependence might differ by PDA subtype. We found KRAS mRNA levels elevated in classical subtype PDAs relative to the other subtypes (Supplementary Fig. 6, p 0.8. We then merged SD-selected datasets using DWD 7 as described 6 . We column (samples) normalized to N(0,1) and row (probe or gene) normalized each dataset by median centering. We merged the processed datasets using DWD and finally, we median centered the rows. NMF and SAM Analysis We analyzed the merged datasets by consensus clustering-based NMF 8 to identify stable subtypes using R code from GenePattern 30 . See supplement for details regarding the interpretation of subtypes derived from consensus-based NMF clustering. We identified PDAssigner genes using three-class SAM analysis based on classes identified from NMF analysis using the Bioconductor 31 package, Siggenes, and generated heatmaps of samples by PDAssigner genes using Cluster software 32 . For cell line classification, we merged the cell line datasets with core PDA clinical datasets after selection of the 62 PDAssigner genes from each dataset followed by DWD based merging. We visualized datasets using the Hierarchical Clustering Viewer (HCV) from GenePattern 30 . Clinical Outcome Analysis We calculated overall survival in days from the time of PDA resection until date of death as defined by the State of California Death Registry and clinical records. We employed the log-rank test for univariate associations with survival or the Cox proportional hazards model for multivariate modeling of survival. We applied Fisher’s exact test to investigate the relationships among subtype, stage and grade. We used the R language for all analyses. We drew the survival curve using web-based GenePattern 30 . Drug Sensitivity We plated 2.5x103 cells per well on day 0, treated with erlotinib or gemcitabine in nine, five-fold serial dilutions on day 1 and estimated cell number using Cell Titre Glow assay (CTG, Promega) on day 4. IC50 was calculated using the Calcusyn program (Biosoft). RNAi We obtained validated pLKO-based shRNA vectors shKRAS#5 33 from Dr. B.R. Stockwell (NYU) and shGATA6#5, and shLuc 34 from Dr. R Adam, (Boston Children’s Hospital). We packaged lentiviruses, transduced cells and then selected in puromycin for 48 hours. For shKRAS proliferation experiments, we plated 2.5 x103 transduced cells per well on day 0 in 96 well plates, then counted one plate on day one and the other plate on day four. We confirmed protein knockdown by western blotting using the Odyssey system, with 10ug per lane of total protein and the c19 KRas antibody (Santa Cruz), normalized to total actin (I-19, Santa Cruz) and compared to pLKOshLuc -KRas levels. For GATA6 knockdown experiments, after puromycin selection cells we trypsinized and plated transduced cells in soft agar as described 35 . We assessed GATA6 transcript levels on the day of plating in soft agar as described 34 . See Supplementary Information for detailed methods. Supplementary Material 1 2 3 4 5 6 7 8 9
                Bookmark

                Author and article information

                Contributors
                Journal
                Environmental Research
                Environmental Research
                Elsevier BV
                00139351
                November 2020
                November 2020
                : 190
                : 109781
                Article
                10.1016/j.envres.2020.109781
                d5a59043-786a-4b5e-a0ef-ac70fd24f034
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article