3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Quasi-free-standing monolayer hexagonal boron nitride on Ni

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Field-effect tunneling transistor based on vertical graphene heterostructures.

          An obstacle to the use of graphene as an alternative to silicon electronics has been the absence of an energy gap between its conduction and valence bands, which makes it difficult to achieve low power dissipation in the OFF state. We report a bipolar field-effect transistor that exploits the low density of states in graphene and its one-atomic-layer thickness. Our prototype devices are graphene heterostructures with atomically thin boron nitride or molybdenum disulfide acting as a vertical transport barrier. They exhibit room-temperature switching ratios of ≈50 and ≈10,000, respectively. Such devices have potential for high-frequency operation and large-scale integration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electron tunneling through ultrathin boron nitride crystalline barriers.

            We investigate the electronic properties of ultrathin hexagonal boron nitride (h-BN) crystalline layers with different conducting materials (graphite, graphene, and gold) on either side of the barrier layer. The tunnel current depends exponentially on the number of h-BN atomic layers, down to a monolayer thickness. Conductive atomic force microscopy scans across h-BN terraces of different thickness reveal a high level of uniformity in the tunnel current. Our results demonstrate that atomically thin h-BN acts as a defect-free dielectric with a high breakdown field. It offers great potential for applications in tunnel devices and in field-effect transistors with a high carrier density in the conducting channel. © 2012 American Chemical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene.

              While chemical vapor deposition (CVD) promises a scalable method to produce large-area graphene, CVD-grown graphene has heretofore exhibited inferior electronic properties in comparison with exfoliated samples. Here we test the electrical transport properties of CVD-grown graphene in which two important sources of disorder, namely grain boundaries and processing-induced contamination, are substantially reduced. We grow CVD graphene with grain sizes up to 250 μm to abate grain boundaries, and we transfer graphene utilizing a novel, dry-transfer method to minimize chemical contamination. We fabricate devices on both silicon dioxide and hexagonal boron nitride (h-BN) dielectrics to probe the effects of substrate-induced disorder. On both substrate types, the large-grain CVD graphene samples are comparable in quality to the best reported exfoliated samples, as determined by low-temperature electrical transport and magnetotransport measurements. Small-grain samples exhibit much greater variation in quality and inferior performance by multiple measures, even in samples exhibiting high field-effect mobility. These results confirm the possibility of achieving high-performance graphene devices based on a scalable synthesis process.
                Bookmark

                Author and article information

                Journal
                Materials Research Express
                Mater. Res. Express
                IOP Publishing
                2053-1591
                January 01 2019
                October 12 2018
                : 6
                : 1
                : 016304
                Article
                10.1088/2053-1591/aae5b4
                d5fb7877-ce5b-48bb-bcd8-a4d2d2409c74
                © 2018

                http://iopscience.iop.org/info/page/text-and-data-mining

                http://iopscience.iop.org/page/copyright

                History

                Comments

                Comment on this article