9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pharmacological inhibition of dihydroorotate dehydrogenase induces apoptosis and differentiation in acute myeloid leukemia cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acute myeloid leukemia is a disorder characterized by abnormal differentiation of myeloid cells and a clonal proliferation derived from primitive hematopoietic stem cells. Interventions that overcome myeloid differentiation have been shown to be a promising therapeutic strategy for acute myeloid leukemia. In this study, we demonstrate that CRISPR/Cas9-mediated knockout of dihydroorotate dehydrogenase leads to apoptosis and normal differentiation of acute myeloid leukemia cells, indicating that dihydroorotate dehydrogenase is a potential differentiation regulator and a therapeutic target in acute myeloid leukemia. By screening a library of natural products, we identified a novel dihydroorotate dehydrogenase inhibitor, isobavachalcone, derived from the traditional Chinese medicine Psoralea corylifolia. Using enzymatic analysis, thermal shift assay, pull down, nuclear magnetic resonance, and isothermal titration calorimetry experiments, we demonstrate that isobavachalcone inhibits human dihydroorotate dehydrogenase directly, and triggers apoptosis and differentiation of acute myeloid leukemia cells. Oral administration of isobavachalcone suppresses subcutaneous HL60 xenograft tumor growth without obvious toxicity. Importantly, our results suggest that a combination of isobavachalcone and adriamycin prolonged survival in an intravenous HL60 leukemia model. In summary, this study demonstrates that isobavachalcone triggers apoptosis and differentiation of acute myeloid leukemia cells via pharmacological inhibition of human dihydroorotate dehydrogenase, offering a potential therapeutic strategy for acute myeloid leukemia.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis.

          The tumour-suppressor phosphatase with tensin homology (PTEN) is the most important negative regulator of the cell-survival signalling pathway initiated by phosphatidylinositol 3-kinase (PI3K). Although PTEN is mutated or deleted in many tumours, deregulation of the PI3K-PTEN network also occurs through other mechanisms. Crosstalk between the PI3K pathways and other tumorigenic signalling pathways, such as those that involve Ras, p53, TOR (target of rapamycin) or DJ1, can contribute to this deregulation. How does the PI3K pathway integrate signals from numerous sources, and how can this information be used in the rational design of cancer therapies?
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MYC oncogenes and human neoplastic disease.

            c-myc, N-myc and L-myc are the three members of the myc oncoprotein family whose role in the pathogenesis of many human neoplastic diseases has received wide empirical support. In this review, we first summarize data, derived mainly from non-clinical studies, indicating that these oncoproteins actually serve quite different roles in vivo. This concept necessarily lies at the heart of the basis for the observation that the deregulated expression of each MYC gene is reproducibly associated with only certain naturally occurring malignancies in humans and that these genes are not interchangeable with respect to their aberrant functional consequences. We also review evidence implicating each of the above MYC genes in specific neoplastic diseases and have attempted to identify unresolved questions which deserve further basic or clinical investigation. We have made every attempt to review those diseases for which significant and confirmatory evidence, based on studies with primary tumor material, exists to implicate MYC members in their causation and/or progression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia.

              Patients with cytogenetically normal acute myeloid leukemia (CN-AML) show heterogeneous treatment outcomes. We used gene-expression profiling to develop a gene signature that predicts overall survival (OS) in CN-AML. Based on data from 163 patients treated in the German AMLCG 1999 trial and analyzed on oligonucleotide microarrays, we used supervised principal component analysis to identify 86 probe sets (representing 66 different genes), which correlated with OS, and defined a prognostic score based on this signature. When applied to an independent cohort of 79 CN-AML patients, this continuous score remained a significant predictor for OS (hazard ratio [HR], 1.85; P = .002), event-free survival (HR = 1.73; P = .001), and relapse-free survival (HR = 1.76; P = .025). It kept its prognostic value in multivariate analyses adjusting for age, FLT3 ITD, and NPM1 status. In a validation cohort of 64 CN-AML patients treated on CALGB study 9621, the score also predicted OS (HR = 4.11; P < .001), event-free survival (HR = 2.90; P < .001), and relapse-free survival (HR = 3.14, P < .001) and retained its significance in a multivariate model for OS. In summary, we present a novel gene-expression signature that offers additional prognostic information for patients with CN-AML.
                Bookmark

                Author and article information

                Journal
                Haematologica
                Haematologica
                haematol
                Haematologica
                Haematologica
                Ferrata Storti Foundation
                0390-6078
                1592-8721
                September 2018
                07 June 2018
                : 103
                : 9
                : 1472-1483
                Affiliations
                [1 ]Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, China
                [2 ]CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), China
                [3 ]Guangdong Institute for Drug Control, Guangzhou, China
                [4 ]Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, China
                [5 ]Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, MD, USA
                [6 ]Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel
                [7 ]Center for Complex Networks Research and Department of Physics, Northeastern University, Boston, MA, USA
                [8 ]Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
                [9 ]Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, OH, USA
                [10 ]Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, OH, USA
                Author notes
                [#]

                DW and WW contributed equally to this work.

                Article
                1031472
                10.3324/haematol.2018.188185
                6119157
                29880605
                d64acd6b-3a87-441b-967e-a405f20be6b9
                Copyright© 2018 Ferrata Storti Foundation

                Material published in Haematologica is covered by copyright. All rights are reserved to the Ferrata Storti Foundation. Use of published material is allowed under the following terms and conditions:

                https://creativecommons.org/licenses/by-nc/4.0/legalcode. Copies of published material are allowed for personal or internal use. Sharing published material for non-commercial purposes is subject to the following conditions:

                https://creativecommons.org/licenses/by-nc/4.0/legalcode, sect. 3. Reproducing and sharing published material for commercial purposes is not allowed without permission in writing from the publisher.

                History
                : 10 January 2018
                : 30 May 2018
                Categories
                Article
                Acute Myeloid Leukemia

                Comments

                Comment on this article