0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A community‐driven captive‐breeding and reintroduction program maintains genetic diversity in a threatened freshwater fish

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Collaborative approaches to conservation management are critical to respond to the ongoing biodiversity crisis. However, local community involvement in many conservation actions is lacking, especially within translocation and reintroduction programs. Similarly, rapid integration of genetic information into collaborative programs with local communities is rarely conducted. Here, we describe a community‐based and collaborative reintroduction program for a threatened Australian freshwater fish, the southern pygmy perch ( Nannoperca australis). We integrate on‐the‐ground translocation efforts by volunteers from local communities, captive breeding by a private aquarium business, and genetic analyses done by a research institution to provide a holistic framework for the reintroduction of southern pygmy perch. We evaluated genetic diversity, population structure, relatedness, and inbreeding across the duration of the reintroduction program using data from neutral and adaptive genomic markers. This allowed us to assess the ability of such a program to minimize inbreeding and retain genomic variation, and to promote adaptive potential of the reintroduced population. While genetic variation for the source populations was very low, we found no decrease in genetic diversity or increase in inbreeding across the program. These genetic findings support the efforts made by local communities and will further inform future reintroductions as part of a collaborative conservation framework. We expand on our empirical case study by describing a theoretical framework for integrating conservation genomics research with community‐led conservation management programs and identifying the benefits of such a collaboration. Our study highlights the importance of multifaceted and integrated conservation management approaches to effectively protect and manage threatened species.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          Fast gapped-read alignment with Bowtie 2.

          As the rate of sequencing increases, greater throughput is demanded from read aligners. The full-text minute index is often used to make alignment very fast and memory-efficient, but the approach is ill-suited to finding longer, gapped alignments. Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The variant call format and VCFtools

            Summary: The variant call format (VCF) is a generic format for storing DNA polymorphism data such as SNPs, insertions, deletions and structural variants, together with rich annotations. VCF is usually stored in a compressed manner and can be indexed for fast data retrieval of variants from a range of positions on the reference genome. The format was developed for the 1000 Genomes Project, and has also been adopted by other projects such as UK10K, dbSNP and the NHLBI Exome Project. VCFtools is a software suite that implements various utilities for processing VCF files, including validation, merging, comparing and also provides a general Perl API. Availability: http://vcftools.sourceforge.net Contact: rd@sanger.ac.uk
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fast model-based estimation of ancestry in unrelated individuals.

              Population stratification has long been recognized as a confounding factor in genetic association studies. Estimated ancestries, derived from multi-locus genotype data, can be used to perform a statistical correction for population stratification. One popular technique for estimation of ancestry is the model-based approach embodied by the widely applied program structure. Another approach, implemented in the program EIGENSTRAT, relies on Principal Component Analysis rather than model-based estimation and does not directly deliver admixture fractions. EIGENSTRAT has gained in popularity in part owing to its remarkable speed in comparison to structure. We present a new algorithm and a program, ADMIXTURE, for model-based estimation of ancestry in unrelated individuals. ADMIXTURE adopts the likelihood model embedded in structure. However, ADMIXTURE runs considerably faster, solving problems in minutes that take structure hours. In many of our experiments, we have found that ADMIXTURE is almost as fast as EIGENSTRAT. The runtime improvements of ADMIXTURE rely on a fast block relaxation scheme using sequential quadratic programming for block updates, coupled with a novel quasi-Newton acceleration of convergence. Our algorithm also runs faster and with greater accuracy than the implementation of an Expectation-Maximization (EM) algorithm incorporated in the program FRAPPE. Our simulations show that ADMIXTURE's maximum likelihood estimates of the underlying admixture coefficients and ancestral allele frequencies are as accurate as structure's Bayesian estimates. On real-world data sets, ADMIXTURE's estimates are directly comparable to those from structure and EIGENSTRAT. Taken together, our results show that ADMIXTURE's computational speed opens up the possibility of using a much larger set of markers in model-based ancestry estimation and that its estimates are suitable for use in correcting for population stratification in association studies.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Conservation Science and Practice
                Conservat Sci and Prac
                Wiley
                2578-4854
                2578-4854
                January 2024
                December 07 2023
                January 2024
                : 6
                : 1
                Affiliations
                [1 ] Molecular Ecology Laboratory, College of Science and Engineering Flinders University Adelaide Australia
                [2 ] School of Biological Sciences The University of Western Australia Crawley WA Australia
                [3 ] Middle Creek Farm Stratford Australia
                [4 ] North Central Catchment Management Authority Huntly Australia
                Article
                10.1111/csp2.13054
                d6f4ea55-73ec-4af7-9500-5206924c7230
                © 2024

                http://creativecommons.org/licenses/by/4.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article