28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Perspectives on the probiotic potential of lactic acid bacteria from African traditional fermented foods and beverages

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diverse African traditional fermented foods and beverages, produced using different types of fermentation, have been used since antiquity because of their numerous nutritional values. Lactic acid bacteria (LAB) isolated from these products have emerged as a welcome source of antimicrobials and therapeutics, and are accepted as probiotics. Probiotics are defined as live microbial food supplements which beneficially affect the host by improving the intestinal microbial balance. Currently, popular probiotics are derived from fermented milk products. However, with the growing number of consumers with lactose intolerance that are affected by dietary cholesterol from milk products, there is a growing global interest in probiotics from other food sources. The focus of this review is to provide an overview of recent developments on the applications of probiotic LAB globally, and to specifically highlight the suitability of African fermented foods and beverages as a viable source of novel probiotics.

          Related collections

          Most cited references120

          • Record: found
          • Abstract: found
          • Article: not found

          Probiotics and their fermented food products are beneficial for health.

          Probiotics are usually defined as microbial food supplements with beneficial effects on the consumers. Most probiotics fall into the group of organisms' known as lactic acid-producing bacteria and are normally consumed in the form of yogurt, fermented milks or other fermented foods. Some of the beneficial effect of lactic acid bacteria consumption include: (i) improving intestinal tract health; (ii) enhancing the immune system, synthesizing and enhancing the bioavailability of nutrients; (iii) reducing symptoms of lactose intolerance, decreasing the prevalence of allergy in susceptible individuals; and (iv) reducing risk of certain cancers. The mechanisms by which probiotics exert their effects are largely unknown, but may involve modifying gut pH, antagonizing pathogens through production of antimicrobial compounds, competing for pathogen binding and receptor sites as well as for available nutrients and growth factors, stimulating immunomodulatory cells, and producing lactase. Selection criteria, efficacy, food and supplement sources and safety issues around probiotics are reviewed. Recent scientific investigation has supported the important role of probiotics as a part of a healthy diet for human as well as for animals and may be an avenue to provide a safe, cost effective, and 'natural' approach that adds a barrier against microbial infection. This paper presents a review of probiotics in health maintenance and disease prevention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bacteriocin-based strategies for food biopreservation.

            Bacteriocins are ribosomally-synthesized peptides or proteins with antimicrobial activity, produced by different groups of bacteria. Many lactic acid bacteria (LAB) produce bacteriocins with rather broad spectra of inhibition. Several LAB bacteriocins offer potential applications in food preservation, and the use of bacteriocins in the food industry can help to reduce the addition of chemical preservatives as well as the intensity of heat treatments, resulting in foods which are more naturally preserved and richer in organoleptic and nutritional properties. This can be an alternative to satisfy the increasing consumers demands for safe, fresh-tasting, ready-to-eat, minimally-processed foods and also to develop "novel" food products (e.g. less acidic, or with a lower salt content). In addition to the available commercial preparations of nisin and pediocin PA-1/AcH, other bacteriocins (like for example lacticin 3147, enterocin AS-48 or variacin) also offer promising perspectives. Broad-spectrum bacteriocins present potential wider uses, while narrow-spectrum bacteriocins can be used more specifically to selectively inhibit certain high-risk bacteria in foods like Listeria monocytogenes without affecting harmless microbiota. Bacteriocins can be added to foods in the form of concentrated preparations as food preservatives, shelf-life extenders, additives or ingredients, or they can be produced in situ by bacteriocinogenic starters, adjunct or protective cultures. Immobilized bacteriocins can also find application for development of bioactive food packaging. In recent years, application of bacteriocins as part of hurdle technology has gained great attention. Several bacteriocins show additive or synergistic effects when used in combination with other antimicrobial agents, including chemical preservatives, natural phenolic compounds, as well as other antimicrobial proteins. This, as well as the combined use of different bacteriocins may also be an attractive approach to avoid development of resistant strains. The combination of bacteriocins and physical treatments like high pressure processing or pulsed electric fields also offer good opportunities for more effective preservation of foods, providing an additional barrier to more refractile forms like bacterial endospores as well. The effectiveness of bacteriocins is often dictated by environmental factors like pH, temperature, food composition and structure, as well as the food microbiota. Foods must be considered as complex ecosystems in which microbial interactions may have a great influence on the microbial balance and proliferation of beneficial or harmful bacteria. Recent developments in molecular microbial ecology can help to better understand the global effects of bacteriocins in food ecosystems, and the study of bacterial genomes may reveal new sources of bacteriocins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings.

              The enteric flora comprises approximately 95% of the total number of cells in the human body and can elicit immune responses while protecting against microbial pathogens. However, the resident bacterial flora of the gastrointestinal tract may also be implicated in the pathogenesis of diseases such as inflammatory bowel disease (ulcerative colitis and Crohn disease). The objectives of the Probiotic Research Group based at University College Cork were to isolate and identify lactic acid bacteria exhibiting beneficial probiotic traits, such as bile tolerance in the absence of deconjugation activity, acid resistance, adherence to host epithelial tissue, and in vitro antagonism of pathogenic microorganisms or those suspected of promoting inflammation. To isolate potentially effective probiotic bacteria, we screened the microbial population adhering to surgically resected segments of the gastrointestinal tract (the environment in which they may subsequently be reintroduced and required to function). In total, 1500 bacterial strains from resected human terminal ilea were assessed. From among these organisms, Lactobacillus salivarius subsp. salivarius strain UCC118 was selected for further study. In mouse feeding trials, milk-borne L. salivarius strain UCC118 could successfully colonize the murine gastrointestinal tract. A human feeding study conducted in 80 healthy volunteers showed that yogurt can be used as a vehicle for delivery of strain UCC118 to the human gastrointestinal tract with considerable efficacy in influencing gut flora and colonization. In summary, we developed criteria for in vitro selection of probiotic bacteria that may reflect certain in vivo effects on the host such as modulation of gastrointestinal tract microflora.
                Bookmark

                Author and article information

                Journal
                Food Nutr Res
                Food Nutr Res
                FNR
                Food & Nutrition Research
                Co-Action Publishing
                1654-661X
                08 March 2016
                2016
                : 60
                : 10.3402/fnr.v60.29630
                Affiliations
                Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, South Africa
                Author notes
                [* ] Mduduzi Paul Mokoena, Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa, Email: mokoenap@ 123456ukzn.ac.za
                Article
                29630
                10.3402/fnr.v60.29630
                4785221
                26960543
                d705753a-b33c-49bf-88b4-5abb64e144d4
                © 2016 Mduduzi Paul Mokoena et al.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for any purpose, even commercially, provided the original work is properly cited and states its license.

                History
                : 04 September 2015
                : 07 January 2016
                : 07 January 2016
                Categories
                Review Article

                Nutrition & Dietetics
                antimicrobials,probiotics,lactic acid bacteria,fermented foods
                Nutrition & Dietetics
                antimicrobials, probiotics, lactic acid bacteria, fermented foods

                Comments

                Comment on this article