16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Activity of Smurf2 Ubiquitin Ligase Is Regulated by the Wnt Pathway Protein Dishevelled

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wnt and BMP signaling pathways are two key molecular machineries regulating development and homeostasis. The efficient coordination of Wnt and BMP is essential in many developmental processes such as establishment of antero-posterior and dorso-ventral body axis, regulation of convergent extension, or development of various organ systems. SMAD ubiquitination regulatory factor (Smurf) family of E3 ubiquitin ligases are important and evolutionary conserved regulators of TGF-β/BMP signaling pathways. Smurf2 has been previously shown to regulate Wnt/planar cell polarity (PCP) signaling pathway by ubiquitinating Prickle1, one of the key components of PCP. We explored the role of Smurf2 in Wnt pathways in further detail and identified that Smurf2 is also a ubiquitin ligase of Dishevelled (DVL), the key cytoplasmic signal transducer in the Wnt pathway. Interestingly, the Smurf2 and DVL relationship expands beyond substrate-E3 ligase. We can show that DVL activates Smurf2, which allows Smurf2 to ubiquitinate its substrates from Wnt/PCP (Prickle1) as well as TGF-β/BMP (Smad2) pathways more efficiently. Using SMAD7 as an example of Smurf2 activator we show that DVL and SMAD7 both activates Smurf2 activity. In HEK293 cells the deficiency of DVL phenocopies absence of Smurf2 and leads to the increased phosphorylation of R-Smads. Smurf2-DVL connection provides a novel and intriguing point of crosstalk for Wnt and BMP pathways.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Dishevelled: The hub of Wnt signaling.

          Wnt signaling controls a variety of developmental and homeostatic events. As a key component of Wnt signaling, Dishevelled (Dvl/Dsh) protein relays Wnt signals from receptors to downstream effectors. In the canonical Wnt pathway that depends on the nuclear translocation of beta-catenin, Dvl is recruited by the receptor Frizzled and prevents the constitutive destruction of cytosolic beta-catenin. In the non-canonical Wnt pathways such as Wnt-Frizzled/PCP (planar cell polarity) signaling, Dvl signals via the Daam1-RhoA axis and the Rac1 axis. In addition, Dvl plays important roles in Wnt-GSK3beta-microtubule signaling, Wnt-calcium signaling, Wnt-RYK signaling, Wnt-atypical PKC signaling, etc. Dvl also functions to mediate receptor endocytosis. To fulfill its multifaceted functions, it is not surprising that Dvl associates with various kinds of proteins. Its activity is also modulated dynamically by phosphorylation, ubiquitination and degradation. In this review, we summarize the current understanding of Dvl functions in Wnt signal transduction and its biological functions in mouse development, and also discuss the molecular mechanisms of its actions. 2009 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation.

            Multiple signaling pathways, including Wnt signaling, participate in animal development, stem cell biology, and human cancer. Although many components of the Wnt pathway have been identified, unresolved questions remain as to the mechanism by which Wnt binding to its receptors Frizzled and Low-density lipoprotein receptor-related protein 6 (LRP6) triggers downstream signaling events. With live imaging of vertebrate cells, we show that Wnt treatment quickly induces plasma membrane-associated LRP6 aggregates. LRP6 aggregates are phosphorylated and can be detergent-solubilized as ribosome-sized multiprotein complexes. Phospho-LRP6 aggregates contain Wnt-pathway components but no common vesicular traffic markers except caveolin. The scaffold protein Dishevelled (Dvl) is required for LRP6 phosphorylation and aggregation. We propose that Wnts induce coclustering of receptors and Dvl in LRP6-signalosomes, which in turn triggers LRP6 phosphorylation to promote Axin recruitment and beta-catenin stabilization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The HECT family of E3 ubiquitin ligases: multiple players in cancer development.

              The involvement of the homologous to E6-AP carboxyl terminus (HECT)-type E3s in crucial signaling pathways implicated in tumorigenesis is presently an area of intense research and extensive scientific interest. This review highlights recent discoveries on the ubiquitin-mediated degradation of crucial tumor suppressor molecules catalyzed by the HECT-type E3s. By providing a portrait of their protein targets, we intend to link the substrate specificity of HECT-type E3s with their contribution to tumorigenesis. Moreover, we discuss the relevance of targeting the HECT E3s, through the development of small-molecule inhibitors, as an anticancer therapeutic strategy.
                Bookmark

                Author and article information

                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                07 May 2020
                May 2020
                : 9
                : 5
                : 1147
                Affiliations
                [1 ]Institute of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; ondrej.bernatik@ 123456gmail.com (O.B.); 394465@ 123456mail.muni.cz (P.P.); ranjani.ganji@ 123456gmail.com (R.S.G.)
                [2 ]Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61200 Brno, Czech Republic
                Author notes
                [* ]Correspondence: bryja@ 123456sci.muni.cz ; Tel.: +420-549493291; Fax: +420-541211214
                Author information
                https://orcid.org/0000-0002-2188-332X
                https://orcid.org/0000-0002-9136-5085
                Article
                cells-09-01147
                10.3390/cells9051147
                7290506
                32392721
                d74f816b-858a-4cd6-bad7-21012795d807
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 14 April 2020
                : 04 May 2020
                Categories
                Article

                smurf2,dishevelled,tgf-β/bmp signaling,wnt signaling,prickle,ubiquitination

                Comments

                Comment on this article