29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Galactic Inner Halo: Searching for White Dwarfs and Measuring the Fundamental Galactic Constant, Vo/Ro

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We establish an extragalactic, zero-motion frame of reference within the deepest optical image of a globular star cluster, an HST 123-orbit exposure of M4 (GO 8679, cycle 9). The line of sight beyond M4 (l,b (deg) = 351,16) intersects the inner halo (spheroid) of our Galaxy at a tangent-point distance of 7.6 kpc (for Ro = 8 kpc). We isolate these spheroid stars from the cluster based on their proper motions over the 6-year baseline between these and previous epoch HST data (GO 5461, cycle 4). Distant background galaxies are also found on the same sight line using image-morphology techniques. This fixed reference frame allows us to independently determine the fundamental Galactic constant, Vo/Ro = 25.3 +/- 2.6 km/s/kpc, thus providing a velocity of the Local Standard of Rest, v = 202.7 +/- 24.7 km/s for Ro = 8.0 +/- 0.5 kpc. Secondly, the galaxies allow a direct measurement of M4's absolute proper motion, mu_total = 22.57 +/- 0.76 mas/yr, in excellent agreement with recent studies. The clear separation of galaxies from stars in these deep data also allow us to search for inner-halo white dwarfs. We model the conventional Galactic contributions of white dwarfs along our line of sight and predict 7.9 (thin disk), 6.3 (thick disk) and 2.2 (spheroid) objects to the limiting magnitude at which we can clearly delineate stars from galaxies (V = 29). An additional 2.5 objects are expected from a 20% white dwarf dark halo consisting of 0.5 Mo objects, 70% of which are of the DA type. After considering the kinematics and morphology of the objects in our data set, we find the number of white dwarfs to be consistent with the predictions for each of the conventional populations. However, we do not find any evidence for dark halo white dwarfs.

          Related collections

          Author and article information

          Journal
          01 April 2003
          2003-10-03
          Article
          10.1086/380432
          astro-ph/0304036
          d79c8d64-4d02-4fa3-a579-6bab6f86d286
          History
          Custom metadata
          Astrophys.J. 601 (2004) 277-288
          31 pages, including 6 diagrams and 2 tables. Accepted for publication in ApJ
          astro-ph

          Comments

          Comment on this article