88
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Concentration of Strontium-90 at Selected Hot Spots in Japan

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study is dedicated to the environmental monitoring of radionuclides released in the course of the Fukushima nuclear accident. The activity concentrations of β -emitting 90Sr and β /γ-emitting 134Cs and 137Cs from several hot spots in Japan were determined in soil and vegetation samples. The 90Sr contamination levels of the samples were relatively low and did not exceed the Bq⋅g −1 range. They were up four orders of magnitude lower than the respective 137Cs levels. This study, therefore, experimentally confirms previous predictions indicating a low release of 90Sr from the Fukushima reactors, due to its low volatility. The radiocesium contamination could be clearly attributed to the Fukushima nuclear accident via its activity ratio fingerprint ( 134Cs/ 137Cs). Although the correlation between 90Sr and 137Cs is relatively weak, the data set suggests an intrinsic coexistence of both radionuclides in the contaminations caused by the Fukushima nuclear accident. This observation is of great importance not only for remediation campaigns but also for the current food monitoring campaigns, which currently rely on the assumption that the activity concentrations of β -emitting 90Sr (which is relatively laborious to determine) is not higher than 10% of the level of γ-emitting 137Cs (which can be measured quickly). This assumption could be confirmed for the samples investigated herein.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident.

          The largest concern on the cesium-137 ((137)Cs) deposition and its soil contamination due to the emission from the Fukushima Daiichi Nuclear Power Plant (NPP) showed up after a massive quake on March 11, 2011. Cesium-137 ((137)Cs) with a half-life of 30.1 y causes the largest concerns because of its deleterious effect on agriculture and stock farming, and, thus, human life for decades. Removal of (137)Cs contaminated soils or land use limitations in areas where removal is not possible is, therefore, an urgent issue. A challenge lies in the fact that estimates of (137)Cs emissions from the Fukushima NPP are extremely uncertain, therefore, the distribution of (137)Cs in the environment is poorly constrained. Here, we estimate total (137)Cs deposition by integrating daily observations of (137)Cs deposition in each prefecture in Japan with relative deposition distribution patterns from a Lagrangian particle dispersion model, FLEXPART. We show that (137)Cs strongly contaminated the soils in large areas of eastern and northeastern Japan, whereas western Japan was sheltered by mountain ranges. The soils around Fukushima NPP and neighboring prefectures have been extensively contaminated with depositions of more than 100,000 and 10,000 MBq km(-2), respectively. Total (137)Cs depositions over two domains: (i) the Japan Islands and the surrounding ocean (130-150 °E and 30-46 °N) and, (ii) the Japan Islands, were estimated to be approximately 6.7 and 1.3 PBq, [corrected] respectively.We hope our (137)Cs deposition maps will help to coordinate decontamination efforts and plan regulatory measures in Japan.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan.

            A tremendous amount of radioactivity was discharged because of the damage to cooling systems of nuclear reactors in the Fukushima No. 1 nuclear power plant in March 2011. Fukushima and its adjacent prefectures were contaminated with fission products from the accident. Here, we show a geographical distribution of radioactive iodine, tellurium, and cesium in the surface soils of central-east Japan as determined by gamma-ray spectrometry. Especially in Fukushima prefecture, contaminated area spreads around Iitate and Naka-Dori for all the radionuclides we measured. Distributions of the radionuclides were affected by the physical state of each nuclide as well as geographical features. Considering meteorological conditions, it is concluded that the radioactive material transported on March 15 was the major contributor to contamination in Fukushima prefecture, whereas the radioactive material transported on March 21 was the major source in Ibaraki, Tochigi, Saitama, and Chiba prefectures and in Tokyo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fukushima-derived radionuclides in the ocean and biota off Japan.

              The Tōhoku earthquake and tsunami of March 11, 2011, resulted in unprecedented radioactivity releases from the Fukushima Dai-ichi nuclear power plants to the Northwest Pacific Ocean. Results are presented here from an international study of radionuclide contaminants in surface and subsurface waters, as well as in zooplankton and fish, off Japan in June 2011. A major finding is detection of Fukushima-derived (134)Cs and (137)Cs throughout waters 30-600 km offshore, with the highest activities associated with near-shore eddies and the Kuroshio Current acting as a southern boundary for transport. Fukushima-derived Cs isotopes were also detected in zooplankton and mesopelagic fish, and unique to this study we also find (110 m)Ag in zooplankton. Vertical profiles are used to calculate a total inventory of ~2 PBq (137)Cs in an ocean area of 150,000 km(2). Our results can only be understood in the context of our drifter data and an oceanographic model that shows rapid advection of contaminants further out in the Pacific. Importantly, our data are consistent with higher estimates of the magnitude of Fukushima fallout and direct releases [Stohl et al. (2011) Atmos Chem Phys Discuss 11:28319-28394; Bailly du Bois et al. (2011) J Environ Radioact, 10.1016/j.jenvrad.2011.11.015]. We address risks to public health and marine biota by showing that though Cs isotopes are elevated 10-1,000× over prior levels in waters off Japan, radiation risks due to these radionuclides are below those generally considered harmful to marine animals and human consumers, and even below those from naturally occurring radionuclides.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                7 March 2013
                : 8
                : 3
                : e57760
                Affiliations
                [1 ]Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
                [2 ]Vienna University of Technology, Atominstitut, Vienna, Austria
                [3 ]Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
                University of Zurich, Switzerland
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: GS VS KS. Performed the experiments: GS VS. Analyzed the data: GS VS. Contributed reagents/materials/analysis tools: KS. Wrote the paper: GS.

                Article
                PONE-D-12-33552
                10.1371/journal.pone.0057760
                3591386
                23505440
                d7b1c013-b23a-45c3-ac89-1f071463a9af
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 24 October 2012
                : 24 January 2013
                Page count
                Pages: 5
                Funding
                Partial funding of this work by the Austrian Federal Ministry for Agriculture, Forestry, Environment and Water Management (BMLFUW) and the Dr. Michael-Häupl-Fonds is gratefully acknowledged. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biophysics
                Radiation Biophysics
                Radiation Exposure
                Chemistry
                Environmental Chemistry
                Pollutants
                Nuclear Chemistry
                Radiation Chemistry
                Radiochemistry
                Radioactivity
                Earth Sciences
                Environmental Sciences
                Physics
                Biophysics
                Radiation Biophysics
                Radiation Exposure
                Nuclear Physics
                Radioactivity
                Radiometry

                Uncategorized
                Uncategorized

                Comments

                Comment on this article