4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Polybrominated dibenzo-p-dioxins (PBDDs) and – dibenzofurans (PBDFs) in cod (Gadus morhua) liver-derived products from 1972 to 2017

      , ,
      Science of The Total Environment
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Polybrominated dibenzo-p-dioxins, dibenzofurans, and biphenyls: inclusion in the toxicity equivalency factor concept for dioxin-like compounds.

          In 2011, a joint World Health Organization (WHO) and United Nations Environment Programme (UNEP) expert consultation took place, during which the possible inclusion of brominated analogues of the dioxin-like compounds in the WHO Toxicity Equivalency Factor (TEF) scheme was evaluated. The expert panel concluded that polybrominated dibenzo-p-dioxins (PBDDs), dibenzofurans (PBDFs), and some dioxin-like biphenyls (dl-PBBs) may contribute significantly in daily human background exposure to the total dioxin toxic equivalencies (TEQs). These compounds are also commonly found in the aquatic environment. Available data for fish toxicity were evaluated for possible inclusion in the WHO-UNEP TEF scheme (van den Berg et al., 1998). Because of the limited database, it was decided not to derive specific WHO-UNEP TEFs for fish, but for ecotoxicological risk assessment, the use of specific relative effect potencies (REPs) from fish embryo assays is recommended. Based on the limited mammalian REP database for these brominated compounds, it was concluded that sufficient differentiation from the present TEF values of the chlorinated analogues (van den Berg et al., 2006) was not possible. However, the REPs for PBDDs, PBDFs, and non-ortho dl-PBBs in mammals closely follow those of the chlorinated analogues, at least within one order of magnitude. Therefore, the use of similar interim TEF values for brominated and chlorinated congeners for human risk assessment is recommended, pending more detailed information in the future.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Polybrominated dibenzofurans and dibenzo-p-dioxins: thermal reaction products of polybrominated diphenyl ether flame retardants

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Occurrence of polybrominated biphenyls, polybrominated dibenzo-p-dioxins, and polybrominated dibenzofurans as impurities in commercial polybrominated diphenyl ether mixtures.

              The objective of this study was to determine the concentrations and compositions of polybrominated biphenyls (PBBs), polybrominated dibenzo-p-dioxins (PBDDs), and polybrominated dibenzofurans (PBDFs) as contaminants in the commercial polybrominated diphenyl ether (PBDE) mixtures DE-71, DE-79, and DE-83 and to ascertain the lot-to-lot variations in the proportions of these contaminants. Commercial PBDE mixtures tested in the present study contained both PBBs and PBDFs, as impurities, at concentrations in the range of several tens to several thousands of nanograms per gram. Concentrations of total PBDFs were greater than those of total PBBs in DE-79 and DE-83 mixtures. PBDDs were not detected at levels above the limit of detection. Profiles of PBB and PBDF congeners varied with the degree of bromination of the commercial PBDE mixtures (i.e., more highly brominated mixtures of PBDEs contained heavily brominated homologues of PBBs and PBDFs). On the basis of the production/ usage of commercial PBDE mixtures in 2001, potential global annual emissions of PBBs and PBDFs were calculated to be 40 and 2300 kg, respectively. Results of our study suggestthat PBDFs can also be formed during the production of commercial PBDE mixtures, in addition to their formation during pyrolysis of brominated flame retardants.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Science of The Total Environment
                Science of The Total Environment
                Elsevier BV
                00489697
                June 2020
                June 2020
                : 722
                : 137840
                Article
                10.1016/j.scitotenv.2020.137840
                d85ef783-6741-4d88-bf28-158e3c218518
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article