1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Evaluation of serum level of substance P and tissue distribution of NK-1 receptor in breast cancer

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Role of tumor microenvironment in tumorigenesis

          Tumorigenesis is a complex and dynamic process, consisting of three stages: initiation, progression, and metastasis. Tumors are encircled by extracellular matrix (ECM) and stromal cells, and the physiological state of the tumor microenvironment (TME) is closely connected to every step of tumorigenesis. Evidence suggests that the vital components of the TME are fibroblasts and myofibroblasts, neuroendocrine cells, adipose cells, immune and inflammatory cells, the blood and lymphatic vascular networks, and ECM. This manuscript, based on the current studies of the TME, offers a more comprehensive overview of the primary functions of each component of the TME in cancer initiation, progression, and invasion. The manuscript also includes primary therapeutic targeting markers for each player, which may be helpful in treating tumors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of substance P in inflammatory disease.

            The diffuse neuroendocrine system consists of specialised endocrine cells and peptidergic nerves and is present in all organs of the body. Substance P (SP) is secreted by nerves and inflammatory cells such as macrophages, eosinophils, lymphocytes, and dendritic cells and acts by binding to the neurokinin-1 receptor (NK-1R). SP has proinflammatory effects in immune and epithelial cells and participates in inflammatory diseases of the respiratory, gastrointestinal, and musculoskeletal systems. Many substances induce neuropeptide release from sensory nerves in the lung, including allergen, histamine, prostaglandins, and leukotrienes. Patients with asthma are hyperresponsive to SP and NK-1R expression is increased in their bronchi. Neurogenic inflammation also participates in virus-associated respiratory infection, non-productive cough, allergic rhinitis, and sarcoidosis. SP regulates smooth muscle contractility, epithelial ion transport, vascular permeability, and immune function in the gastrointestinal tract. Elevated levels of SP and upregulated NK-1R expression have been reported in the rectum and colon of patients with inflammatory bowel disease (IBD), and correlate with disease activity. Increased levels of SP are found in the synovial fluid and serum of patients with rheumatoid arthritis (RA) and NK-1R mRNA is upregulated in RA synoviocytes. Glucocorticoids may attenuate neurogenic inflammation by decreasing NK-1R expression in epithelial and inflammatory cells and increasing production of neutral endopeptidase (NEP), an enzyme that degrades SP. Preventing the proinflammatory effects of SP using tachykinin receptor antagonists may have therapeutic potential in inflammatory diseases such as asthma, sarcoidosis, chronic bronchitis, IBD, and RA. In this paper, we review the role that SP plays in inflammatory disease. Copyright 2004 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Role of the Tumor Microenvironment in Breast Cancer

              In recent years, it has been shown that breast cancer consists not only of neoplastic cells, but also of significant alterations in the surrounding stroma or tumor microenvironment. These alterations are now recognized as a critical element for breast cancer development and progression, as well as potential therapeutic targets. Various components of the breast cancer microenvironment, such as suppressive immune cells, soluble factors and altered extracellular matrix, act together to impede effective antitumor immunity and promote breast cancer progression and metastasis. Stromal cells in the breast cancer microenvironment are characterized by molecular alterations and aberrant signaling pathways, some of which are prognostic of clinical outcome. Several new therapies targeting stromal components are in development or undergoing clinical trials. We focus herein on the composition of the breast cancer microenvironment and concomitant molecular alterations, the specific interplay between various cell types and cancer cells, and the clinical implications of these findings.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Molecular Biology Reports
                Mol Biol Rep
                Springer Science and Business Media LLC
                0301-4851
                1573-4978
                February 2019
                January 25 2019
                February 2019
                : 46
                : 1
                : 1285-1293
                Article
                10.1007/s11033-019-04599-9
                30684188
                d8600b6f-992e-4772-8c2a-0eda5f3a54f8
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article