0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Salvianolate Ameliorates Renal Damage Induced by C-BSA in Membranous Nephropathy Rats Through Inhibiting Hypercoagulable State and Alleviating Podocyte Injury

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Membranous nephropathy (MN), one of the primary pathogenic forms of adult nephrotic syndromes, frequently coexists with hypercoagulability and hyperviscosity. MN is prone to thrombosis, embolism, and other complications, leading to the accelerated occurrence of glomerulosclerosis and renal fibrosis. Therefore, it is particularly important to promote blood circulation and remove stasis through anticoagulant therapy. Salvianolate (SAL) is a Chinese patent anticoagulant commonly used in clinical practice to promote blood circulation and remove blood stasis. SAL plays an important role in alleviating urinary protein and renal pathological damage in MN patients.

          Objectives

          In the present study, we aimed to investigate the kidney-protective effect of SAL on MN in a rat model.

          Materials and Methods

          The rat model of MN was established by tail vein injection of cationic bovine serum albumin (C-BSA). After the treatment, urinary proteins, hypercoagulable state index (fibrinogen (Fib), D dimer (D-D)), hepatic and renal functions, renal pathology, and podocyte marker proteins were analyzed to explore the renal protective effect of SAL on MN rats and its underlying mechanism.

          Results

          In the modeled rats, we discovered a significant rise in urinary protein, a hypercoagulable state, and hypoproteinemia. Additionally, the expressions of Wilms’ tumor protein 1 (WT-1), podocalyxin (PCX), and vascular endothelial growth factor (VEGF) in renal tissues were significantly downregulated, indicating remarkable pathological damage to podocytes and renal tissues in MN rats. The expressions of the above-mentioned indices could be greatly reversed by SAL, which could also regulate the hypercoagulable state and suppress podocyte damage and renal pathological harm.

          Conclusion

          Our results suggested that the renal protective effect of SAL on C-BSA-induced MN was related to its ability to inhibit hypercoagulable states, upregulate the expressions of WT-1, PCX, and VEGF in the renal tissue, and repair podocyte injury.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Salvia miltiorrhiza in Treating Cardiovascular Diseases: A Review on Its Pharmacological and Clinical Applications

          Bioactive chemical constitutes from the root of Salvia miltiorrhiza classified in two major groups, viz., liposoluble tanshinones and water-soluble phenolics. Tanshinone IIA is a major lipid-soluble compound having promising health benefits. The in vivo and in vitro studies showed that the tanshinone IIA and salvianolate have a wide range of cardiovascular and other pharmacological effects, including antioxidative, anti-inflammatory, endothelial protective, myocardial protective, anticoagulation, vasodilation, and anti-atherosclerosis, as well as significantly help to reduce proliferation and migration of vascular smooth muscle cells. In addition, some of the clinical studies reported that the S. miltiorrhiza preparations in combination with Western medicine were more effective for treatment of various cardiovascular diseases including angina pectoris, myocardial infarction, hypertension, hyperlipidemia, and pulmonary heart diseases. In this review, we demonstrated the potential applications of S. miltiorrhiza, including pharmacological effects of salvianolate, tanshinone IIA, and its water-soluble derivative, like sodium tanshinone IIA sulfonate. Moreover, we also provided details about the clinical applications of S. miltiorrhiza preparations in controlling the cardiovascular diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Activation of NFAT signaling in podocytes causes glomerulosclerosis.

            Mutant forms of TRPC6 can activate NFAT-dependent transcription in vitro via calcium influx and activation of calcineurin. The same TRPC6 mutants can cause FSGS, but whether this involves an NFAT-dependent mechanism is unknown. Here, we generated mice that allow conditional induction of NFATc1. Mice with NFAT activation in nascent podocytes in utero developed proteinuria and glomerulosclerosis postnatally, resembling FSGS. NFAT activation in adult mice also caused progressive proteinuria and FSGS. Ultrastructural studies revealed podocyte foot process effacement and deposition of extracellular matrix. NFAT activation did not initially affect expression of podocin, synaptopodin, and nephrin but reduced their expression as glomerular injury progressed. In contrast, we observed upregulation of Wnt6 and Fzd9 in the mutant glomeruli before the onset of significant proteinuria, suggesting a potential role for Wnt signaling in the pathogenesis of NFAT-induced podocyte injury and FSGS. These results provide in vivo evidence for the involvement of NFAT signaling in podocytes, proteinuria, and glomerulosclerosis. Furthermore, this study suggests that NFAT activation may be a key intermediate step in the pathogenesis of mutant TRPC6-mediated FSGS and that suppression of NFAT activity may contribute to the antiproteinuric effects of calcineurin inhibitors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Spectrum of biopsy proven renal diseases in Central China: a 10-year retrospective study based on 34,630 cases

              Chronic kidney diseases have become a major issue worldwide. The spectrum of biopsy proven renal diseases differs between locations and changes over time. It is therefore essential to describe the local epidemiological trends and the prevalence of renal biopsy in various regions to shine new light on the pathogenesis of various renal diseases and provide a basis for further hypothesis-driven research. We retrospectively analyzed 34,630 hospitalized patients undergoing native renal biopsy between January 1, 2009 and December 31, 2018. Indications for renal biopsy and histological diagnosis were analyzed to describe the prevalence of renal biopsy, and changing prevalence between period 1 (2009–2013) and period 2 (2014–2018) were further analyzed. Nephrotic syndrome (NS) was the most common indication for biopsy. Membranous nephropathy (MN, 24.96%) and IgA nephropathy (IgAN, 24.09%) were the most common primary glomerulonephritis (PGN). MN was most common in adults, with IgAN more prevalent in children. Lupus nephritis (LN) was the most common secondary glomerulonephritis (SGN) in adults, while Henöch–Schönlein purpura nephritis (HSPN) in children. The prevalence of MN increased significantly and nearly doubled from period 1 (15.98%) to period 2 (30.81%) (P = 0.0004). The same trend appeared with membranoproliferative glomerulonephritis (MPGN), diabetic nephropathy (DN) and obesity-related glomerulopathy (ORG), while the frequencies of minimal change disease (MCD), focal segmental glomerulosclerosis (FSGS), LN and hepatitis B associated glomerulonephritis (HBV-GN) significantly decreased between the two intervals. NS was the most common indication for biopsy across all age groups and genders. MN has overtaken IgAN to become the most common PGN in adults, while IgAN was the most common PGN in children. LN was the most common SGN in adults, and HSPN the most common in children.
                Bookmark

                Author and article information

                Journal
                Pharmacognosy Magazine
                Pharmacognosy Magazine
                SAGE Publications
                0973-1296
                0976-4062
                September 2023
                June 09 2023
                September 2023
                : 19
                : 3
                : 678-688
                Affiliations
                [1 ]Department of Nephrology, Shijiazhuang Municipal Hospital of Traditional Chinese Medicine, Shijiazhuang, China
                [2 ]Department of Nephrology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
                [3 ]Department of Traditional Chinese Medicine, Affiliated Hospital of Hebei Engineering University, Handan, China
                Article
                10.1177/09731296231170082
                d8863874-af4b-4c64-998b-e6b347e3e1d9
                © 2023

                https://creativecommons.org/licenses/by-nc/4.0/

                History

                Comments

                Comment on this article