4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Computer Aided Drug Design Approach to Screen Phytoconstituents of Adhatoda vasica as Potential Inhibitors of SARS-CoV-2 Main Protease Enzyme

      , , ,
      Life
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A novel coronavirus (COVID-19) was identified as one of the severe acute respiratory syndrome coronaviruses (SARS-CoV-2) and emerged as a pandemic in 2020. Thus, there is an urgent need to screen and develop an agent to suppress the proliferation of viral particles of SARS-CoV-2, and several drugs have entered clinical trial phases to assess their therapeutic potential. The objective of the present study is to screen phytochemicals against the main viral protease using molecular docking studies. The phytochemicals vasicine, vasicinone, vasicinolone, vasicol, vasicolinone, adhatodine, adhavasicinone, aniflorine, anisotine, vasnetine, and orientin from Adhatoda vasica were selected, and the compounds were docked with various viral protein targets, including specific SARS-CoV-2 main protease (PDBID:6Y84), using AutoDock, Schrodinger, Biovia discovery studio, and virtual screening tools. Adhatodine and vasnetine showed a better binding affinity of −9.60 KJ/mol and −8.78 KJ/mol, respectively. In molecular docking simulations for 10 ns, these compounds illustrated strong hydrogen-bonding interactions with the protein active site and induced a potential conformational change in the ligand-binding site. The results were compared with the antiviral drugs nirmatrelvir and ritonavir. These results suggest that these phytochemicals can be studied as potential inhibitors against SARS-CoV-2 protease and may have an antiviral effect on coronavirus. However, further in vitro and in vivo efficacy activity needs to be investigated for these phytochemicals.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          The Protein Data Bank.

          The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules

            To be effective as a drug, a potent molecule must reach its target in the body in sufficient concentration, and stay there in a bioactive form long enough for the expected biologic events to occur. Drug development involves assessment of absorption, distribution, metabolism and excretion (ADME) increasingly earlier in the discovery process, at a stage when considered compounds are numerous but access to the physical samples is limited. In that context, computer models constitute valid alternatives to experiments. Here, we present the new SwissADME web tool that gives free access to a pool of fast yet robust predictive models for physicochemical properties, pharmacokinetics, drug-likeness and medicinal chemistry friendliness, among which in-house proficient methods such as the BOILED-Egg, iLOGP and Bioavailability Radar. Easy efficient input and interpretation are ensured thanks to a user-friendly interface through the login-free website http://www.swissadme.ch. Specialists, but also nonexpert in cheminformatics or computational chemistry can predict rapidly key parameters for a collection of molecules to support their drug discovery endeavours.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing

              The newly emergent human virus SARS-CoV-2 is resulting in high fatality rates and incapacitated health systems. Preventing further transmission is a priority. We analyzed key parameters of epidemic spread to estimate the contribution of different transmission routes and determine requirements for case isolation and contact-tracing needed to stop the epidemic. We conclude that viral spread is too fast to be contained by manual contact tracing, but could be controlled if this process was faster, more efficient and happened at scale. A contact-tracing App which builds a memory of proximity contacts and immediately notifies contacts of positive cases can achieve epidemic control if used by enough people. By targeting recommendations to only those at risk, epidemics could be contained without need for mass quarantines (‘lock-downs’) that are harmful to society. We discuss the ethical requirements for an intervention of this kind.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                LBSIB7
                Life
                Life
                MDPI AG
                2075-1729
                February 2022
                February 20 2022
                : 12
                : 2
                : 315
                Article
                10.3390/life12020315
                35207602
                d920a52e-0472-4e9e-be19-051c2b657783
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article