Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Endothelial Cell Phenotype, a Major Determinant of Venous Thrombo-Inflammation

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reduced blood flow velocity in the vein triggers inflammation and is associated with the release into the extracellular space of alarmins or damage-associated molecular patterns (DAMPs). These molecules include extracellular nucleic acids, extracellular purinergic nucleotides (ATP, ADP), cytokines and extracellular HMGB1. They are recognized as a danger signal by immune cells, platelets and endothelial cells. Hence, endothelial cells are capable of sensing environmental cues through a wide variety of receptors expressed at the plasma membrane. The endothelium is then responding by expressing pro-coagulant proteins, including tissue factor, and inflammatory molecules such as cytokines and chemokines involved in the recruitment and activation of platelets and leukocytes. This ultimately leads to thrombosis, which is an active pro-inflammatory process, tightly regulated, that needs to be properly resolved to avoid further vascular damages. These mechanisms are often dysregulated, which promote fibrinolysis defects, activation of the immune system and irreversible vascular damages further contributing to thrombotic and inflammatory processes. The concept of thrombo-inflammation is now widely used to describe the complex interactions between the coagulation and inflammation in various cardiovascular diseases. In endothelial cells, activating signals converge to multiple intracellular pathways leading to phenotypical changes turning them into inflammatory-like cells. Accumulating evidence suggest that endothelial to mesenchymal transition (EndMT) may be a major mechanism of endothelial dysfunction induced during inflammation and thrombosis. EndMT is a biological process where endothelial cells lose their endothelial characteristics and acquire mesenchymal markers and functions. Endothelial dysfunction might play a central role in orchestrating and amplifying thrombo-inflammation thought induction of EndMT processes. Mechanisms regulating endothelial dysfunction have been only partially uncovered in the context of thrombotic diseases. In the present review, we focus on the importance of the endothelial phenotype and discuss how endothelial plasticity may regulate the interplay between thrombosis and inflammation. We discuss how the endothelial cells are sensing and responding to environmental cues and contribute to thrombo-inflammation with a particular focus on venous thromboembolism (VTE). A better understanding of the precise mechanisms involved and the specific role of endothelial cells is needed to characterize VTE incidence and address the risk of recurrent VTE and its sequelae.

          Related collections

          Most cited references137

          • Record: found
          • Abstract: found
          • Article: not found

          Neutrophil extracellular traps in immunity and disease

          Neutrophils are innate immune phagocytes that have a central role in immune defence. Our understanding of the role of neutrophils in pathogen clearance, immune regulation and disease pathology has advanced dramatically in recent years. Web-like chromatin structures known as neutrophil extracellular traps (NETs) have been at the forefront of this renewed interest in neutrophil biology. The identification of molecules that modulate the release of NETs has helped to refine our view of the role of NETs in immune protection, inflammatory and autoimmune diseases and cancer. Here, I discuss the key findings and concepts that have thus far shaped the field of NET biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DAMP-sensing receptors in sterile inflammation and inflammatory diseases

            The innate immune system has the capacity to detect 'non-self' molecules derived from pathogens, known as pathogen-associated molecular patterns, via pattern recognition receptors. In addition, an increasing number of endogenous host-derived molecules, termed damage-associated molecular patterns (DAMPs), have been found to be sensed by various innate immune receptors. The recognition of DAMPs, which are produced or released by damaged and dying cells, promotes sterile inflammation, which is important for tissue repair and regeneration, but can also lead to the development of numerous inflammatory diseases, such as metabolic disorders, neurodegenerative diseases, autoimmune diseases and cancer. Here we examine recent discoveries concerning the roles of DAMP-sensing receptors in sterile inflammation and in diseases resulting from dysregulated sterile inflammation, and then discuss insights into the cross-regulation of these receptors and their ligands.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thrombosis as an intravascular effector of innate immunity.

              Thrombosis is the most frequent cause of mortality worldwide and is closely linked to haemostasis, which is the biological mechanism that stops bleeding after the injury of blood vessels. Indeed, both processes share the core pathways of blood coagulation and platelet activation. Here, we summarize recent work suggesting that thrombosis under certain circumstances has a major physiological role in immune defence, and we introduce the term immunothrombosis to describe this process. Immunothrombosis designates an innate immune response induced by the formation of thrombi inside blood vessels, in particular in microvessels. Immunothrombosis is supported by immune cells and by specific thrombosis-related molecules and generates an intravascular scaffold that facilitates the recognition, containment and destruction of pathogens, thereby protecting host integrity without inducing major collateral damage to the host. However, if uncontrolled, immunothrombosis is a major biological process fostering the pathologies associated with thrombosis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cardiovasc Med
                Front Cardiovasc Med
                Front. Cardiovasc. Med.
                Frontiers in Cardiovascular Medicine
                Frontiers Media S.A.
                2297-055X
                21 April 2022
                2022
                : 9
                : 864735
                Affiliations
                Inserm, Univ Brest, CHRU Brest, UMR 1304, GETBO , Brest, France
                Author notes

                Edited by: Robert Campbell, The University of Utah, United States

                Reviewed by: Amit Prabhakar, University of California, San Francisco, United States; Madhumita Chatterjee, University of Tübingen, Germany; Mehran Ghasemzadeh, High Institute for Education and Research in Transfusion Medicine, Iran

                This article was submitted to Atherosclerosis and Vascular Medicine, a section of the journal Frontiers in Cardiovascular Medicine

                Article
                10.3389/fcvm.2022.864735
                9068971
                35528838
                d950e906-24a8-4776-872f-1478d6361308
                Copyright © 2022 Pilard, Ollivier, Gourdou-Latyszenok, Couturaud and Lemarié.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 January 2022
                : 21 March 2022
                Page count
                Figures: 3, Tables: 2, Equations: 0, References: 138, Pages: 18, Words: 13748
                Categories
                Cardiovascular Medicine
                Review

                venous thromboembolism,endothelial cell,inflammation,endothelial plasticity,fibrosis

                Comments

                Comment on this article