4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      De novo assembly and characterization of Muscovy duck liver transcriptome and analysis of differentially regulated genes in response to heat stress

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High temperature is a major abiotic stress limiting animal growth and productivity worldwide. The Muscovy duck (Cairina moschata), sometimes called the Barbary drake, is a type of duck with a fairly unusual domestication history. In Southeast Asia, duck meat is one of the top meats consumed, and as such, the production of the meat is an important topic of research. The transcriptomic and genomic data presently available are insufficient to understanding the molecular mechanism underlying the heat tolerance of Muscovy ducks. Thus, transcriptome and expression profiling data for this species are required as important resource for identifying genes and developing molecular marker. In this study, de novo transcriptome assembly and gene expression analysis using Illumina sequencing technology were performed. More than 225 million clean reads were generated and assembled into 36,903 unique transcripts with an average length of 1,135 bp. A total of 21,221 (57.50 %) unigenes were annotated. Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority of sequenced genes were associated with transcription, signal transduction, and apoptosis. We also performed gene expression profiling analysis upon heat treatment in Muscovy ducks and identified 470 heat-response unique transcripts. GO term enrichment showed that protein folding and chaperone binding were significant enrichment, whereas KEGG pathway analyses showed that Ras and MAPKs were activated after heat stress in Muscovy ducks. Our research enriched sequences information of Muscovy duck, provided novel insights into responses to heat stress in these ducks, and serve as candidate genes or markers that can be used to guide future efforts to breed heat-tolerant duck strains.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress.

          The present study was aimed at elucidating the effects of supplementing mannan-oligosaccharides (MOS) and probiotic mixture (PM) on growth performance, intestinal histology, and corticosterone concentrations in broilers kept under chronic heat stress (HS). Four hundred fifty 1-d-old chicks were divided into 5 treatment groups and fed a corn-soybean diet ad-libitum. The temperature control (CONT) group was held at the normal ambient temperature. Heat stress broilers were held at 35 ± 2°C from d 1 until the termination of the study at d 42. Heat stress groups consisted of HS-CONT fed the basal diet; HS-MOS fed the basal diet containing 0.5% MOS; HS-PM fed the basal diet containing 0.1% PM; and HS-SYN (synbiotic) fed 0.5% MOS and 0.1% PM in the basal diet. Broilers were examined at d 21 and 42 for BW gain, feed consumption, feed conversion ratio (FCR), serum corticosterone concentrations, and ileal microarchitecture. The results revealed that the CONT group had higher (P < 0.01) feed consumption, BW gain, and lower FCR on d 21 and 42, compared with the HS-CONT group. Among supplemented groups, the HS-MOS had higher (P < 0.05) BW gain and lower FCR compared with the HS-CONT group. On d 21 and 42, the HS-CONT group had higher (P < 0.05) serum corticosterone concentrations compared with the CONT and supplemented groups. The CONT group had higher (P < 0.05) villus height, width, surface area, and crypt depth compared with the HS-CONT group. On d 21, the HS-PM had higher (P < 0.05) villus width and surface area compared with HS-CONT group. On d 42, the HS-SYN had higher (P < 0.05) villus width and crypt depth compared with the HS-CONT group. These results showed that chronic HS reduces broiler production performance, intestinal microarchitecture, and increases adrenal hormone concentrations. Also, supplementation of the MOS prebiotic and the PM can partially lessen these changes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Genome-Wide Distribution and Organization of Microsatellites in Plants: An Insight into Marker Development in Brachypodium

            Plant genomes are complex and contain large amounts of repetitive DNA including microsatellites that are distributed across entire genomes. Whole genome sequences of several monocot and dicot plants that are available in the public domain provide an opportunity to study the origin, distribution and evolution of microsatellites, and also facilitate the development of new molecular markers. In the present investigation, a genome-wide analysis of microsatellite distribution in monocots (Brachypodium, sorghum and rice) and dicots (Arabidopsis, Medicago and Populus) was performed. A total of 797,863 simple sequence repeats (SSRs) were identified in the whole genome sequences of six plant species. Characterization of these SSRs revealed that mono-nucleotide repeats were the most abundant repeats, and that the frequency of repeats decreased with increase in motif length both in monocots and dicots. However, the frequency of SSRs was higher in dicots than in monocots both for nuclear and chloroplast genomes. Interestingly, GC-rich repeats were the dominant repeats only in monocots, with the majority of them being present in the coding region. These coding GC-rich repeats were found to be involved in different biological processes, predominantly binding activities. In addition, a set of 22,879 SSR markers that were validated by e-PCR were developed and mapped on different chromosomes in Brachypodium for the first time, with a frequency of 101 SSR markers per Mb. Experimental validation of 55 markers showed successful amplification of 80% SSR markers in 16 Brachypodium accessions. An online database ‘BraMi’ (Brachypodium microsatellite markers) of these genome-wide SSR markers was developed and made available in the public domain. The observed differential patterns of SSR marker distribution would be useful for studying microsatellite evolution in a monocot–dicot system. SSR markers developed in this study would be helpful for genomic studies in Brachypodium and related grass species, especially for the map based cloning of the candidate gene(s).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transcriptional regulation by the MAP kinase signaling cascades.

              A major function of the mitogen-activated protein kinase (MAPK) pathways is to control eukaryotic gene expression programmes in response to extracellular signals. MAPKs directly control gene expression by phosphorylating transcription factors. However, it is becoming clear that transcriptional regulation in response to MAPK signaling is more complex. MAPKs can also target coactivators and corepressors and affect nucleosomal structure by inducing histone modifications. Furthermore, multiple inputs into individual promoters can be elicited by MAPKs by targeting different components of the same coregulatory complex or by triggering different events on the same transcription factor. "Postgenomic approaches" are beginning to impact on our understanding of these gene regulatory networks. In this review, we summarise the current knowledge of MAPK-mediated gene regulation, and focus on how complexities in signaling outcomes are achieved and how this relates to physiological processes.
                Bookmark

                Author and article information

                Journal
                Cell Stress and Chaperones
                Cell Stress and Chaperones
                Springer Nature America, Inc
                1355-8145
                1466-1268
                May 2015
                February 9 2015
                May 2015
                : 20
                : 3
                : 483-493
                Article
                10.1007/s12192-015-0573-4
                4406934
                25663538
                da2b92f6-d2a2-418a-b281-902be596a496
                © 2015
                History

                Comments

                Comment on this article