8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      tmRNA of Streptomyces collinus and Streptomyces griseus during the growth and in the presence of antibiotics

      research-article
      , , *
      Microbial biotechnology
      Blackwell Publishing Ltd

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Streptomycetes are soil microorganisms with the potential to produce a broad spectrum of secondary metabolities. The production of antibiotics is accompanied by a decrease in protein synthesis, which raises the question of how these bacteria survived the transition from the primary to the secondary metabolism. Translating ribosomes incapable to properly elongate or terminate polypeptide chain activate bacterial trans‐translation system. Abundance and stability of the tmRNA during growth of Streptomyces collinus and Streptomyces griseus producing kirromycin and streptomycin, respectively, was analysed. The level of tmRNA is mostly proportional to the activity of the translational system. We demonstrate that the addition of sub‐inhibitory concentrations of produced antibiotics to the cultures from the beginning of the exponential phase of growth leads to an increase in tmRNA levels and to an incorporation of amino acids into the tag‐peptides at trans‐translation of stalled ribosomes. These findings suggest that produced antibiotics induce tmRNA that facilitate reactivation of stalled complex of ribosomes and maintain viability. The effect of antibiotics that inhibit the cell‐wall turnover, DNA, RNA or protein synthesis on the level of tmRNA was examined. Antibiotics interfering with ribosomal target sites are more effective at stimulation of the tmRNA level in streptomycetes examined than those affecting the synthesis of DNA, RNA or the cell wall.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          A common mechanism of cellular death induced by bactericidal antibiotics.

          Antibiotic mode-of-action classification is based upon drug-target interaction and whether the resultant inhibition of cellular function is lethal to bacteria. Here we show that the three major classes of bactericidal antibiotics, regardless of drug-target interaction, stimulate the production of highly deleterious hydroxyl radicals in Gram-negative and Gram-positive bacteria, which ultimately contribute to cell death. We also show, in contrast, that bacteriostatic drugs do not produce hydroxyl radicals. We demonstrate that the mechanism of hydroxyl radical formation induced by bactericidal antibiotics is the end product of an oxidative damage cellular death pathway involving the tricarboxylic acid cycle, a transient depletion of NADH, destabilization of iron-sulfur clusters, and stimulation of the Fenton reaction. Our results suggest that all three major classes of bactericidal drugs can be potentiated by targeting bacterial systems that remediate hydroxyl radical damage, including proteins involved in triggering the DNA damage response, e.g., RecA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics.

            Antibiotics such as erythromycin and rifampicin, at low concentrations, alter global bacterial transcription patterns as measured by the stimulation or inhibition of a variety of promoter-lux reporter constructs in a Salmonella typhimurium library. Analysis of a 6,500-clone library indicated that as many as 5% of the promoters may be affected, comprising genes for a variety of functions, as well as a significant fraction of genes with no known function. Studies of a selection of the reporter clones showed that stimulation varied depending on the nature of the antibiotic, the promoter, and what culture medium was used; the response differed on solid as compared with liquid media. Transcription was markedly reduced in antibiotic-resistant hosts, but the presence of mutations deficient in stress responses such as SOS or universal stress did not prevent antibiotic-induced modulation. The results show that small molecules may have contrasting effects on bacteria depending on their concentration: either the modulation of bacterial metabolism by altering transcription patterns or the inhibition of growth by the inhibition of specific target functions. Both activities could play important roles in the regulation of microbial communities. These studies indicate that the detection of pharmaceutically useful natural product inhibitors could be effectively achieved by measuring activation of transcription at low concentrations in high-throughput assays using appropriate bacterial promoter-reporter constructs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli

              Modulation of bacterial chromosomal supercoiling is a function of DNA gyrase-catalyzed strand breakage and rejoining. This reaction is exploited by both antibiotic and proteic gyrase inhibitors, which trap the gyrase molecule at the DNA cleavage stage. Owing to this interaction, double-stranded DNA breaks are introduced and replication machinery is arrested at blocked replication forks. This immediately results in bacteriostasis and ultimately induces cell death. Here we demonstrate, through a series of phenotypic and gene expression analyses, that superoxide and hydroxyl radical oxidative species are generated following gyrase poisoning and play an important role in cell killing by gyrase inhibitors. We show that superoxide-mediated oxidation of iron–sulfur clusters promotes a breakdown of iron regulatory dynamics; in turn, iron misregulation drives the generation of highly destructive hydroxyl radicals via the Fenton reaction. Importantly, our data reveal that blockage of hydroxyl radical formation increases the survival of gyrase-poisoned cells. Together, this series of biochemical reactions appears to compose a maladaptive response, that serves to amplify the primary effect of gyrase inhibition by oxidatively damaging DNA, proteins and lipids.
                Bookmark

                Author and article information

                Journal
                Microb Biotechnol
                Microb Biotechnol
                MBT
                Microbial biotechnology
                Blackwell Publishing Ltd (Oxford, UK )
                1751-7915
                1751-7915
                January 2009
                22 December 2008
                : 2
                : 1
                : 114-122
                Affiliations
                [1 ]Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídenská 1083, Prague 4, 14220 Czech Republic.
                Author notes
                *E‐mail mikulik@ 123456biomed.cas.cz ; Tel. (+42) 0241062373; Fax (+42) 02224172257.
                Article
                10.1111/j.1751-7915.2008.00066.x
                3815426
                21261886
                da42f908-afa0-4fa8-9ad3-7be3e8e952fa
                © 2008 The Authors; Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd
                History
                : 19 July 2008
                : 13 August 2008
                : 03 September 2008
                Categories
                Research Articles

                Biotechnology
                Biotechnology

                Comments

                Comment on this article