Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Charge-specific size-dependent separation of water-soluble organic molecules by fluorinated nanoporous networks

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Molecular architecture in nanoscale spaces can lead to selective chemical interactions and separation of species with similar sizes and functionality. Substrate specific sorbent chemistry is well known through highly crystalline ordered structures such as zeolites, metal organic frameworks and widely available nanoporous carbons. Size and charge-dependent separation of aqueous molecular contaminants, on the contrary, have not been adequately developed. Here we report a charge-specific size-dependent separation of water-soluble molecules through an ultra-microporous polymeric network that features fluorines as the predominant surface functional groups. Treatment of similarly sized organic molecules with and without charges shows that fluorine interacts with charges favourably. Control experiments using similarly constructed frameworks with or without fluorines verify the fluorine-cation interactions. Lack of a σ-hole for fluorine atoms is suggested to be responsible for this distinct property, and future applications of this discovery, such as desalination and mixed matrix membranes, may be expected to follow.

          Abstract

          Porous materials for aqueous contaminant removal are common, but there are few examples of size and charge-dependent separation. Here, the authors report the charge-specific size-dependent separation of water-soluble molecules through a polymeric network where fluorines are the predominant surface groups.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites.

          The energy costs associated with large-scale industrial separation of light hydrocarbons by cryogenic distillation could potentially be lowered through development of selective solid adsorbents that operate at higher temperatures. Here, the metal-organic framework Fe(2)(dobdc) (dobdc(4-) : 2,5-dioxido-1,4-benzenedicarboxylate) is demonstrated to exhibit excellent performance characteristics for separation of ethylene/ethane and propylene/propane mixtures at 318 kelvin. Breakthrough data obtained for these mixtures provide experimental validation of simulations, which in turn predict high selectivities and capacities of this material for the fractionation of methane/ethane/ethylene/acetylene mixtures, removal of acetylene impurities from ethylene, and membrane-based olefin/paraffin separations. Neutron powder diffraction data confirm a side-on coordination of acetylene, ethylene, and propylene at the iron(II) centers, while also providing solid-state structural characterization of the much weaker interactions of ethane and propane with the metal.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer.

            The global occurrence in water resources of organic micropollutants, such as pesticides and pharmaceuticals, has raised concerns about potential negative effects on aquatic ecosystems and human health. Activated carbons are the most widespread adsorbent materials used to remove organic pollutants from water but they have several deficiencies, including slow pollutant uptake (of the order of hours) and poor removal of many relatively hydrophilic micropollutants. Furthermore, regenerating spent activated carbon is energy intensive (requiring heating to 500-900 degrees Celsius) and does not fully restore performance. Insoluble polymers of β-cyclodextrin, an inexpensive, sustainably produced macrocycle of glucose, are likewise of interest for removing micropollutants from water by means of adsorption. β-cyclodextrin is known to encapsulate pollutants to form well-defined host-guest complexes, but until now cross-linked β-cyclodextrin polymers have had low surface areas and poor removal performance compared to conventional activated carbons. Here we crosslink β-cyclodextrin with rigid aromatic groups, providing a high-surface-area, mesoporous polymer of β-cyclodextrin. It rapidly sequesters a variety of organic micropollutants with adsorption rate constants 15 to 200 times greater than those of activated carbons and non-porous β-cyclodextrin adsorbent materials. In addition, the polymer can be regenerated several times using a mild washing procedure with no loss in performance. Finally, the polymer outperformed a leading activated carbon for the rapid removal of a complex mixture of organic micropollutants at environmentally relevant concentrations. These findings demonstrate the promise of porous cyclodextrin-based polymers for rapid, flow-through water treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis.

              A homochiral porous noninterpenetrating metal-organic framework (MOF), 1, was constructed by linking infinite 1D [Cd(mu-Cl)2]n zigzag chains with axially chiral bipyridine bridging ligands containing orthogonal secondary functional groups. The secondary chiral dihydroxy groups accessible via the large open channels in 1 were utilized to generate a heterogeneous asymmetric catalyst for the addition of diethyzinc to aromatic aldehydes to afford chiral secondary alcohols at up to 93% enantiomeric excess (ee). Control experiments with dendritic aromatic aldehydes of different sizes indicate that the heterogeneous asymmetric catalyst derived from 1 is both highly active and enantioselective as a result of the creation of readily accessible, uniform active catalyst sites inside the porous MOF.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                10 November 2016
                2016
                : 7
                : 13377
                Affiliations
                [1 ]Graduate School of Energy, Environment, Water and Sustainability, Korea Advanced Institute of Science and Technology , Daejeon 305-701, Republic of Korea
                [2 ]Department of Chemistry, Korea Advanced Institute of Science and Technology , Daejeon 305-701, Republic of Korea
                Author notes
                [*]

                Present address: Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA

                Author information
                http://orcid.org/0000-0002-4968-6686
                Article
                ncomms13377
                10.1038/ncomms13377
                5109553
                27830697
                da5ae518-41db-4ff2-84a1-b14d81ff7a4c
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 25 February 2016
                : 23 September 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article