Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A DREB gene from Limonium bicolor mediates molecular and physiological responses to copper stress in transgenic tobacco.

      Journal of Plant Physiology
      Amino Acid Sequence, Base Sequence, Cloning, Molecular, Copper, metabolism, DNA Primers, Genes, Plant, Molecular Sequence Data, Plant Proteins, chemistry, genetics, Plants, Genetically Modified, physiology, Plumbaginaceae, Sequence Homology, Amino Acid, Tobacco

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The DRE-binding (DREB) transcription factors play an important role in regulating stress-related genes. In the present study, a novel DREB gene (LbDREB) from Limonium bicolor was cloned. To characterize the function of DREB in heavy metal stress tolerance, LbDREB-transformed tobacco plants were generated and subjected to CuSO(4) stress. Analysis of the role of LbDREB in tolerance to copper stress in transgenic tobacco showed that overexpression of LbDREB increased the contents of soluble protein and proline, and elevated the ratio of K to Na under CuSO(4) stress. Moreover, overexpression of LbDREB can up-regulate some stress-related genes, including Cu/Zn superoxide dismutase (Cu/Zn SOD), peroxidases (PODs), late embryogenesis abundant (LEA), and lipid transfer proteins (LTP). These results suggest that LbDREB can enhance plant copper tolerance by up-regulating a series of stress-related genes, thereby mediating physiological processes associated with stress tolerance in plants. Copyright © 2010 Elsevier GmbH. All rights reserved.

          Related collections

          Author and article information

          Comments

          Comment on this article