8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Extraction and Identification of Anthocyanins in Corn Cob and Corn Husk from Cacahuacintle Maize.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pigmented maize has been extensively studied due to its high anthocyanin content. This study has been focused mainly on kernel, although the whole plant of purple corn is a potential source of anthocyanins. First, general parameters of extraction (solvent system, solvent-to-solid ratio, number of extractions, and acid type) were established depending on the total anthocyanins content. Then, three extraction methods to access anthocyanins were compared: maceration extraction (ME), ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE). Since the residual material still possessed an intense color, a further treatment was performed by application of enzymatic-assisted extraction (EAE). Three enzymatic cocktails (Xylanases, Celluclast, and Depol), pH, and temperature were evaluated to establish optimal reaction conditions. Subsequent analysis and identification of the anthocyanins obtained by four different extraction techniques were performed using HPLC and HPLC-mass spectrometry, respectively. The most efficient method was UAE using 20 min of ultrasound (100 W) preceded by sample treatment in the following conditions: ethanol/water/lactic acid mixture (80:19:1), two extractions, 1:10 solvent-to-solid ratio. As a result, anthocyanins from corn cob and corn husk were extracted at concentrations of 24.32 and 25.80 mg/gDW, respectively. No difference in the anthocyanins profile for samples extracted by three different methods was observed. However, an enhanced presence of cyanidin-3-(6''malonyl)glucoside was detected in the sample corresponding to the EAE method. Therefore, the Cahuacintle corn husk can be considered as a competitive source of anthocyanins with the available commercial sources. PRACTICAL APPLICATION: The by-products obtained from Cacahuacintle purple corn can be potentially used as natural colorants thanks to their anthocyanins content. In this work, we established the most efficient extraction method of anthocyanins from corn husk and corn cob, and demonstrated that their anthocyanins profile is comparable to other Peruvian purple corns, which are currently used as natural colorants. Therefore, the extraction procedure described in this study might be scaled-up in an industrial process to get access to anthocyanins from undervalued wastes.

          Related collections

          Author and article information

          Journal
          J Food Sci
          Journal of food science
          Wiley
          1750-3841
          0022-1147
          May 2019
          : 84
          : 5
          Affiliations
          [1 ] Dept. of Food and Biotechnology, Facultad de Química, Univ. Nacional Autónoma de México., C.P, 04510, Mexico City, Mexico.
          [2 ] Dept. of Biological Systems, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico.
          [3 ] CNMN, Instituto Politécnico Nacional, s/n Unidad Prof. Adolfo López Mateos Gustavo A. Madero, C.P, 07738, Mexico City, Mexico.
          Article
          10.1111/1750-3841.14589
          30994936
          da73117b-87aa-438b-b8eb-97da0fda2243
          © 2019 Institute of Food Technologists®.
          History

          cyanidin-3-(6’’malonyl)glucoside,anthocyanins,purple corn cob,purple corn husk,enzymatic-assisted extraction

          Comments

          Comment on this article