18
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tuberculosis vaccines in the era of Covid-19 – what is taking us so long?

      review-article
      a , * , b
      EBioMedicine
      The Authors. Published by Elsevier B.V.
      Tuberculosis, Vaccines, SARS-CoV-2

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Mycobacterium bovis BCG vaccine was first used in 1921, but has not controlled the global spread of tuberculosis (TB). There are still no new licensed tuberculosis vaccines, although there much active research and a vaccine development pipeline, with vaccines designed to prevent infection, prevent disease, or accelerate TB treatment. These vaccines are of different types, and designed to replace BCG, or to boost immunity following BCG vaccination. This viewpoint discusses why, when it has been possible to develop new vaccines for SARS-CoV-2 so quickly, it is taking so long to develop new tuberculosis vaccines.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany

          To the Editor: The novel coronavirus (2019-nCoV) from Wuhan is currently causing concern in the medical community as the virus is spreading around the world. 1 Since identification of the virus in late December 2019, the number of cases from China that have been imported into other countries is on the rise, and the epidemiologic picture is changing on a daily basis. We are reporting a case of 2019-nCoV infection acquired outside Asia in which transmission appears to have occurred during the incubation period in the index patient. A 33-year-old otherwise healthy German businessman (Patient 1) became ill with a sore throat, chills, and myalgias on January 24, 2020. The following day, a fever of 39.1°C (102.4°F) developed, along with a productive cough. By the evening of the next day, he started feeling better and went back to work on January 27. Before the onset of symptoms, he had attended meetings with a Chinese business partner at his company near Munich on January 20 and 21. The business partner, a Shanghai resident, had visited Germany between January 19 and 22. During her stay, she had been well with no signs or symptoms of infection but had become ill on her flight back to China, where she tested positive for 2019-nCoV on January 26 (index patient in Figure 1) (see Supplementary Appendix, available at NEJM.org, for details on the timeline of symptom development leading to hospitalization). On January 27, she informed the company about her illness. Contact tracing was started, and the above-mentioned colleague was sent to the Division of Infectious Diseases and Tropical Medicine in Munich for further assessment. At presentation, he was afebrile and well. He reported no previous or chronic illnesses and had no history of foreign travel within 14 days before the onset of symptoms. Two nasopharyngeal swabs and one sputum sample were obtained and were found to be positive for 2019-nCoV on quantitative reverse-transcriptase–polymerase-chain-reaction (qRT-PCR) assay. 2 Follow-up qRT-PCR assay revealed a high viral load of 108 copies per milliliter in his sputum during the following days, with the last available result on January 29. On January 28, three additional employees at the company tested positive for 2019-nCoV (Patients 2 through 4 in Figure 1). Of these patients, only Patient 2 had contact with the index patient; the other two patients had contact only with Patient 1. In accordance with the health authorities, all the patients with confirmed 2019-nCoV infection were admitted to a Munich infectious diseases unit for clinical monitoring and isolation. So far, none of the four confirmed patients show signs of severe clinical illness. This case of 2019-nCoV infection was diagnosed in Germany and transmitted outside Asia. However, it is notable that the infection appears to have been transmitted during the incubation period of the index patient, in whom the illness was brief and nonspecific. 3 The fact that asymptomatic persons are potential sources of 2019-nCoV infection may warrant a reassessment of transmission dynamics of the current outbreak. In this context, the detection of 2019-nCoV and a high sputum viral load in a convalescent patient (Patient 1) arouse concern about prolonged shedding of 2019-nCoV after recovery. Yet, the viability of 2019-nCoV detected on qRT-PCR in this patient remains to be proved by means of viral culture. Despite these concerns, all four patients who were seen in Munich have had mild cases and were hospitalized primarily for public health purposes. Since hospital capacities are limited — in particular, given the concurrent peak of the influenza season in the northern hemisphere — research is needed to determine whether such patients can be treated with appropriate guidance and oversight outside the hospital.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China

            An in-depth annotation of the newly discovered coronavirus (2019-nCoV) genome has revealed differences between 2019-nCoV and severe acute respiratory syndrome (SARS) or SARS-like coronaviruses. A systematic comparison identified 380 amino acid substitutions between these coronaviruses, which may have caused functional and pathogenic divergence of 2019-nCoV.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19

              The development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and therapeutics will depend on understanding viral immunity. We studied T cell memory in 42 patients following recovery from COVID-19 (28 with mild disease and 14 with severe disease) and 16 unexposed donors, using interferon-γ-based assays with peptides spanning SARS-CoV-2 except ORF1. The breadth and magnitude of T cell responses were significantly higher in severe as compared with mild cases. Total and spike-specific T cell responses correlated with spike-specific antibody responses. We identified 41 peptides containing CD4+ and/or CD8+ epitopes, including six immunodominant regions. Six optimized CD8+ epitopes were defined, with peptide-MHC pentamer-positive cells displaying the central and effector memory phenotype. In mild cases, higher proportions of SARS-CoV-2-specific CD8+ T cells were observed. The identification of T cell responses associated with milder disease will support an understanding of protective immunity and highlights the potential of including non-spike proteins within future COVID-19 vaccine design.
                Bookmark

                Author and article information

                Journal
                EBioMedicine
                EBioMedicine
                EBioMedicine
                The Authors. Published by Elsevier B.V.
                2352-3964
                12 April 2022
                May 2022
                12 April 2022
                : 79
                : 103993
                Affiliations
                [a ]Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London WCE 7HT, UK
                [b ]The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
                Author notes
                [* ]Corresponding author: Prof H.M. Dockrell, Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London WCE 7HT, UK. Phone: +447595090549.
                Article
                S2352-3964(22)00177-3 103993
                10.1016/j.ebiom.2022.103993
                9002045
                35427852
                daa3e91d-86b3-418d-bf77-36d5f7107e6e
                © 2022 The Authors

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 24 January 2022
                : 11 March 2022
                : 24 March 2022
                Categories
                Personal View

                tuberculosis,vaccines,sars-cov-2
                tuberculosis, vaccines, sars-cov-2

                Comments

                Comment on this article