2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effects of metabolic acidosis on intracellular pH responses in multiple cell types

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Sensors and regulators of intracellular pH.

          Protons dictate the charge and structure of macromolecules and are used as energy currency by eukaryotic cells. The unique function of individual organelles therefore depends on the establishment and stringent maintenance of a distinct pH. This, in turn, requires a means to sense the prevailing pH and to respond to deviations from the norm with effective mechanisms to transport, produce or consume proton equivalents. A dynamic, finely tuned balance between proton-extruding and proton-importing processes underlies pH homeostasis not only in the cytosol, but in other cellular compartments as well.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Disrupting proton dynamics and energy metabolism for cancer therapy.

            Intense interest in the 'Warburg effect' has been revived by the discovery that hypoxia-inducible factor 1 (HIF1) reprogrammes pyruvate oxidation to lactic acid conversion; lactic acid is the end product of fermentative glycolysis. The most aggressive and invasive cancers, which are often hypoxic, rely on exacerbated glycolysis to meet the increased demand for ATP and biosynthetic precursors and also rely on robust pH-regulating systems to combat the excessive generation of lactic and carbonic acids. In this Review, we present the key pH-regulating systems and synthesize recent advances in strategies that combine the disruption of pH control with bioenergetic mechanisms. We discuss the possibility of exploiting, in rapidly growing tumours, acute cell death by 'metabolic catastrophe'.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH.

              Acidosis of the tumor microenvironment is typical of a malignant phenotype, particularly in hypoxic tumors. All cells express multiple isoforms of carbonic anhydrase (CA), enzymes catalyzing the reversible hydration of carbon dioxide into bicarbonate and protons. Tumor cells express membrane-bound CAIX and CAXII that are controlled via the hypoxia-inducible factor (HIF). Despite the recognition that tumor expression of HIF-1alpha and CAIX correlates with poor patient survival, the role of CAIX and CAXII in tumor growth is not fully resolved. To understand the advantage that tumor cells derive from expression of both CAIX and CAXII, we set up experiments to either force or invalidate the expression of these enzymes. In hypoxic LS174Tr tumor cells expressing either one or both CA isoforms, we show that (a) in response to a "CO(2) load," both CAs contribute to extracellular acidification and (b) both contribute to maintain a more alkaline resting intracellular pH (pH(i)), an action that preserves ATP levels and cell survival in a range of acidic outside pH (6.0-6.8) and low bicarbonate medium. In vivo experiments show that ca9 silencing alone leads to a 40% reduction in xenograft tumor volume with up-regulation of ca12 mRNA levels, whereas invalidation of both CAIX and CAXII gives an impressive 85% reduction. Thus, hypoxia-induced CAIX and CAXII are major tumor prosurvival pH(i)-regulating enzymes, and their combined targeting shows that they hold potential as anticancer targets.
                Bookmark

                Author and article information

                Journal
                American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
                American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
                American Physiological Society
                0363-6119
                1522-1490
                December 15 2014
                December 15 2014
                : 307
                : 12
                : R1413-R1427
                Affiliations
                [1 ]Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
                Article
                10.1152/ajpregu.00154.2014
                25209413
                dab6cc71-f76f-4659-aa01-43e90da4d164
                © 2014
                History

                Comments

                Comment on this article