104
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Lantibiotic Peptide Labyrinthopeptin A1 Demonstrates Broad Anti-HIV and Anti-HSV Activity with Potential for Microbicidal Applications

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lantibiotics are peptides, produced by bacteria, that contain the noncanonical amino acid lanthionine and many of them exhibit antibacterial activities. The labyrinthopeptin A1 (LabyA1) is a prototype peptide of a novel class of carbacyclic lantibiotics. Here, we extensively evaluated its broad-spectrum activity against HIV and HSV in vitro, studied its mechanism of action and evaluated potential microbicidal applications. LabyA1 exhibited a consistent and broad anti-HIV activity (EC 50s: 0.70–3.3 µM) and anti-HSV activity (EC 50s: 0.29–2.8 µM) in cell cultures. LabyA1 also inhibited viral cell-cell transmission between persistently HIV-infected T cells and uninfected CD4 + T cells (EC 50∶2.5 µM) and inhibited the transmission of HIV captured by DC-SIGN +-cells to uninfected CD4 + T cells (EC 50∶4.1 µM). Time-of-drug addition studies revealed that LabyA1 acts as an entry inhibitor against HIV and HSV. Cellular and virus binding studies combined with SPR/FLIPR technology showed that LabyA1 interacted with the HIV envelope protein gp120, but not with the HIV cellular receptors. LabyA1 also demonstrated additive to synergistic effects in its anti-HIV-1 and anti-HSV-2 activity with anti(retro)viral drugs in dual combinations such as tenofovir, acyclovir, saquinavir, raltegravir and enfuvirtide. LabyA1 can be considered as a novel lead peptide as it had profound antiviral activity against HIV and HSV. Pre-treatment of PBMCs with LabyA1 neither increased the expression of the activation markers CD69 and CD25, nor enhanced HIV replication, nor significantly induced various inflammatory cytokines/chemokines. LabyA1 also did not affect the growth of vaginal Lactobacilli populations. Based on the lack of toxicity on the vaginal Lactobacillus strains and its synergistic/additive profile in combination with clinically approved anti(retro)virals, it deserves further attention as a potential microbicide candidate in the prevention of sexual transmitted diseases.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors.

          A generalized method for analyzing the effects of multiple drugs and for determining summation, synergism and antagonism has been proposed. The derived, generalized equations are based on kinetic principles. The method is relatively simple and is not limited by whether the dose-effect relationships are hyperbolic or sigmoidal, whether the effects of the drugs are mutually exclusive or nonexclusive, whether the ligand interactions are competitive, noncompetitive or uncompetitive, whether the drugs are agonists or antagonists, or the number of drugs involved. The equations for the two most widely used methods for analyzing synergism, antagonism and summation of effects of multiple drugs, the isobologram and fractional product concepts, have been derived and been shown to have limitations in their applications. These two methods cannot be used indiscriminately. The equations underlying these two methods can be derived from a more generalized equation previously developed by us (59). It can be shown that the isobologram is valid only for drugs whose effects are mutually exclusive, whereas the fractional product method is valid only for mutually nonexclusive drugs which have hyperbolic dose-effect curves. Furthermore, in the isobol method, it is laborious to find proper combinations of drugs that would produce an iso-effective curve, and the fractional product method tends to give indication of synergism, since it underestimates the summation of the effect of mutually nonexclusive drugs that have sigmoidal dose-effect curves. The method described herein is devoid of these deficiencies and limitations. The simplified experimental design proposed for multiple drug-effect analysis has the following advantages: It provides a simple diagnostic plot (i.e., the median-effect plot) for evaluating the applicability of the data, and provides parameters that can be directly used to obtain a general equation for the dose-effect relation; the analysis which involves logarithmic conversion and linear regression can be readily carried out with a simple programmable electronic calculator and does not require special graph paper or tables; and the simplicity of the equation allows flexibility of application and the use of a minimum number of data points. This method has been used to analyze experimental data obtained from enzymatic, cellular and animal systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bacteriocins: developing innate immunity for food.

            Bacteriocins are bacterially produced antimicrobial peptides with narrow or broad host ranges. Many bacteriocins are produced by food-grade lactic acid bacteria, a phenomenon which offers food scientists the possibility of directing or preventing the development of specific bacterial species in food. This can be particularly useful in preservation or food safety applications, but also has implications for the development of desirable flora in fermented food. In this sense, bacteriocins can be used to confer a rudimentary form of innate immunity to foodstuffs, helping processors extend their control over the food flora long after manufacture.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fusing structure and function: a structural view of the herpesvirus entry machinery.

              Herpesviruses are double-stranded DNA, enveloped viruses that infect host cells through fusion with either the host cell plasma membrane or endocytic vesicle membranes. Efficient infection of host cells by herpesviruses is remarkably more complex than infection by other viruses, as it requires the concerted effort of multiple glycoproteins and involves multiple host receptors. The structures of the major viral glycoproteins and a number of host receptors involved in the entry of the prototypical herpesviruses, the herpes simplex viruses (HSVs) and Epstein-Barr virus (EBV), are now known. These structural studies have accelerated our understanding of HSV and EBV binding and fusion by revealing the conformational changes that occur on virus-receptor binding, depicting potential sites of functional protein and lipid interactions, and identifying the probable viral fusogen.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                28 May 2013
                : 8
                : 5
                : e64010
                Affiliations
                [1 ]Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
                [2 ]Centre of Microbial and Plant Genetics, University of Leuven, Leuven, Belgium
                [3 ]Department of Bioscience Engineering, Antwerp University, Antwerp, Belgium
                [4 ]Sanofi R&D, Frankfurt am Main, Germany
                [5 ]Technische Universität Berlin, Fakultät II – Institut für Chemie; Berlin, Germany
                Ghent University, Belgium
                Author notes

                Competing Interests: This study was partly funded by Dormeur Services Inc. Co-authors Stefan Bartoschek and Mark Brönstrup are employed by Sanofi. There are no patents, products in development or marketed products to declare. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: GF GA JV JB SB MB RDS DS. Performed the experiments: GF MIP GA DH BH. Analyzed the data: GF MIP GA DH BH RS JV DS. Contributed reagents/materials/analysis tools: SB MB RDS. Wrote the paper: GF MIP JV JB DH MB RDS DS.

                Article
                PONE-D-13-02831
                10.1371/journal.pone.0064010
                3665789
                23724015
                dacdd942-a449-4fe2-8c41-2cf040719a81
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 18 January 2013
                : 8 April 2013
                Page count
                Pages: 16
                Funding
                This work was supported by the KU Leuven (GOA number 10/014 and PF/10/018), the “Fonds voor Wetenschappelijk Onderzoek” (FWO number G.485.08) and the European Commission (FP7/2007–2013) (CHAARM number 242135), COST action CM0804, the Dormeur Services Inc., the Deutsche Forschungsgemeinschaft (DFG grant SU 239/9-2, the Cluster of Excellence “Unifying Concepts in Catalysis” coordinated by the Technische Universität Berlin. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Microbiology
                Virology
                Antivirals
                Medicine
                Drugs and Devices
                Drug Research and Development
                Global Health
                Infectious Diseases
                Viral Diseases
                HIV
                HIV prevention
                Herpes Simplex
                Sexually Transmitted Diseases
                Public Health

                Uncategorized
                Uncategorized

                Comments

                Comment on this article