+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microbial biotechnologies for potable water production

      1 , , 1

      Microbial Biotechnology

      John Wiley and Sons Inc.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Sustainable Development Goal 6 requires the provision of safe drinking water to the world. We propose that increased exploitation of biological processes is fundamental to achieving this goal due to their low economic and energetic costs. Biological processes exist for the removal of most common contaminants, and biofiltration processes can establish a biologically stable product that retains high quality in distribution networks, minimizing opportunities for pathogen invasion.

          Related collections

          Most cited references 36

          • Record: found
          • Abstract: found
          • Article: not found

          Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes.

          There are significantly more microbial cells in drinking water than what can be cultured on synthetic growth media. Nonetheless, cultivation-based heterotrophic plate counts (HPCs) are used worldwide as a general microbial quality parameter in drinking water treatment and distribution. Total bacterial cell concentrations are normally not considered during drinking water treatment as a design, operative or legislative parameters. This is mainly because easy and rapid methods for quantification of total bacterial cell concentrations have, up to now, not been available. As a consequence, the existing lack of data does not allow demonstrating the practical value of this parameter. In this study, we have used fluorescence staining of microbial cells with the nucleic acid stain SYBR((R)) Green I together with quantitative flow cytometry (FCM) to analyse total cell concentrations in water samples from a drinking water pilot plant. The plant treats surface water (Lake Zürich) through sequential ozonation, granular active carbon (GAC) filtration and membrane ultrafiltration (UF). The data were compared with adenosine tri-phosphate (ATP) measurements and conventional HPCs performed on the same water samples. We demonstrated that the impact of all three major treatment steps on the microbiology in the system could accurately be described with total cell counting: (1) ozonation caused chemical destruction of the bacterial cells; (2) GAC filtration facilitated significant regrowth of the microbial community; and (3) membrane UF physically removed the bacterial cells from the water. FCM typically detected 1-2 log units more than HPC, while ATP measurements were prone to interference from extracellular ATP released during the ozonation step in the treatment train. We have shown that total cell concentration measured with FCM is a rapid, easy, sensitive and importantly, a descriptive parameter of several widely applied drinking water treatment processes.
            • Record: found
            • Abstract: found
            • Article: not found

            Bacterial community structure in the drinking water microbiome is governed by filtration processes.

            The bacterial community structure of a drinking water microbiome was characterized over three seasons using 16S rRNA gene based pyrosequencing of samples obtained from source water (a mix of a groundwater and a surface water), different points in a drinking water plant operated to treat this source water, and in the associated drinking water distribution system. Even though the source water was shown to seed the drinking water microbiome, treatment process operations limit the source water's influence on the distribution system bacterial community. Rather, in this plant, filtration by dual media rapid sand filters played a primary role in shaping the distribution system bacterial community over seasonal time scales as the filters harbored a stable bacterial community that seeded the water treatment processes past filtration. Bacterial taxa that colonized the filter and sloughed off in the filter effluent were able to persist in the distribution system despite disinfection of finished water by chloramination and filter backwashing with chloraminated backwash water. Thus, filter colonization presents a possible ecological survival strategy for bacterial communities in drinking water systems, which presents an opportunity to control the drinking water microbiome by manipulating the filter microbial community. Grouping bacterial taxa based on their association with the filter helped to elucidate relationships between the abundance of bacterial groups and water quality parameters and showed that pH was the strongest regulator of the bacterial community in the sampled drinking water system.
              • Record: found
              • Abstract: found
              • Article: not found

              Overnight stagnation of drinking water in household taps induces microbial growth and changes in community composition.

              Drinking water quality is routinely monitored in the distribution network but not inside households at the point of consumption. Fluctuating temperatures, residence times (stagnation), pipe materials and decreasing pipe diameters can promote bacterial growth in buildings. To test the influence of stagnation in households on the bacterial cell concentrations and composition, water was sampled from 10 separate households after overnight stagnation and after flushing the taps. Cell concentrations, measured by flow cytometry, increased (2-3-fold) in all water samples after stagnation. This increase was also observed in adenosine tri-phosphate (ATP) concentrations (2-18-fold) and heterotrophic plate counts (4-580-fold). An observed increase in cell biovolume and ATP-per-cell concentrations furthermore suggests that the increase in cell concentrations was due to microbial growth. After 5 min flushing of the taps, cell concentrations and water temperature decreased to the level generally found in the drinking water network. Denaturing gradient gel electrophoresis also showed a change in the microbial composition after stagnation. This study showed that water stagnation in household pipes results in considerable microbial changes. While hygienic risk was not directly assessed, it emphasizes the need for the development of good material validation methods, recommendations and spot tests for in-house water installations. However, a simple mitigation strategy would be a short flushing of taps prior to use. Copyright © 2010 Elsevier Ltd. All rights reserved.

                Author and article information

                [ 1 ] DTU Environment Department of Environmental Engineering Technical University of Denmark Bygningstorvet 115 2800 Kgs Lyngby Denmark
                Author notes
                [* ]For correspondence. E‐mail bfsm@ ; Tel. +45 45251600; Fax +45 45932850.
                Microb Biotechnol
                Microb Biotechnol
                Microbial Biotechnology
                John Wiley and Sons Inc. (Hoboken )
                14 September 2017
                September 2017
                : 10
                : 5 , The contribution of microbial biotechnology to sustainable development goals ( doiID: 10.1111/mbt2.2017.10.issue-5 )
                : 1094-1097
                © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                Figures: 0, Tables: 0, Pages: 4, Words: 2973
                Funded by: Villum Fonden
                Research Article
                Goal 6. Ensure availability and sustainable management of water and sanitation for all
                Custom metadata
                September 2017
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.2.0 mode:remove_FC converted:22.09.2017



                Comment on this article