21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of amplification refractory mutation system (ARMS) technique for quick and accurate prenatal gene diagnosis of CHM variant in choroideremia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Choroideremia is a rare X-linked recessive inherited disorder that causes chorioretinal dystrophy leading to visual impairment in its early stages which finally causes total blindness in the affected person. It is caused due to mutations in the CHM gene. In this study, we have recruited a pedigree with choroideremia and detected a nonsense variant (c.C799T:p.R267X) in CHM of the proband (I:1). Different primer sets for amplification refractory mutation system (ARMS) were designed and PCR conditions were optimized. Then, we evaluated the sequence variant in the patient, carrier, and a fetus by using ARMS technique to identify if they inherited the pathogenic gene from parental generation; we used amniotic fluid DNA for the diagnosis of the gene in the fetus. The primer pairs, WT2+C and MT+C, amplified high specific products in different DNAs which were verified by Sanger sequencing. Based on our results, ARMS technique is fast, accurate, and reliable prenatal gene diagnostic tool to assess CHM variants. Taken together, our study indicates that ARMS technique can be used as a potential molecular tool in the diagnosis of prenatal mutation for choroideremia as well as other genetic diseases in undeveloped and developing countries, where there might be shortage of medical resources and supplies.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          AAV2 gene therapy readministration in three adults with congenital blindness.

          Demonstration of safe and stable reversal of blindness after a single unilateral subretinal injection of a recombinant adeno-associated virus (AAV) carrying the RPE65 gene (AAV2-hRPE65v2) prompted us to determine whether it was possible to obtain additional benefit through a second administration of the AAV vector to the contralateral eye. Readministration of vector to the second eye was carried out in three adults with Leber congenital amaurosis due to mutations in the RPE65 gene 1.7 to 3.3 years after they had received their initial subretinal injection of AAV2-hRPE65v2. Results (through 6 months) including evaluations of immune response, retinal and visual function testing, and functional magnetic resonance imaging indicate that readministration is both safe and efficacious after previous exposure to AAV2-hRPE65v2.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prenylation of Rab GTPases: molecular mechanisms and involvement in genetic disease.

            Small GTPases of the Rab family regulate membrane transport pathways. More than 50 mammalian Rab proteins are known, many with transport step-specific localisation. Rabs must associate with cellular membranes for activity and membrane attachment is mediated by prenyl (geranylgeranyl) post-translational modification. Mutations in genes encoding proteins essential for the geranylgeranylation reaction, Rab escort protein and Rab geranylgeranyl transferase, underlie genetic diseases. Choroideremia patients have loss of function mutations in REP1 and the murine Hermansky-Pudlak syndrome model gunmetal possesses a splice-site mutation in the alpha-subunit of RGGT. Here we discuss recent insights into Rab prenylation and advances towards our understanding of both diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Next-generation sequencing-based molecular diagnosis of a Chinese patient cohort with autosomal recessive retinitis pigmentosa.

              Retinitis pigmentosa (RP) is a highly heterogeneous genetic disease; therefore, an accurate molecular diagnosis is essential for appropriate disease treatment and family planning. The prevalence of RP in China had been reported at 1 in 3800, resulting in an estimated total of 340,000 Chinese RP patients. However, genetic studies of Chinese RP patients have been very limited. To date, no comprehensive molecular diagnosis has been done for Chinese RP patients. With the emergence of next-generation sequencing (NGS), comprehensive molecular diagnosis of RP is now within reach. The purpose of this study was to perform the first NGS-based comprehensive molecular diagnosis for Chinese RP patients. Thirty-one well-characterized autosomal recessive RP (arRP) families were recruited. For each family, the DNA sample from one affected member was sequenced using our custom capture panel, which includes 163 retinal disease genes. Variants were called, filtered, and annotated by our in-house automatic pipeline. Twelve arRP families were successfully molecular diagnosed, achieving a diagnostic rate of approximately 40%. Interestingly, approximately 63% of the pathogenic mutations we identified are novel, which is higher than that observed in a similar study on European descent (45%). Moreover, the clinical diagnoses of two families were refined based on the pathogenic mutations identified in the patients. We conclude that comprehensive molecular diagnosis can be vital for an accurate clinical diagnosis of RP. Applying this tool on patients from different ethnic groups is essential for enhancing our knowledge of the global spectrum of RP disease-causing mutations.
                Bookmark

                Author and article information

                Journal
                Appl Clin Genet
                Appl Clin Genet
                The Application of Clinical Genetics
                The Application of Clinical Genetics
                Dove Medical Press
                1178-704X
                2018
                19 December 2017
                : 11
                : 1-8
                Affiliations
                [1 ]Key Laboratory of Epigenetics and Oncology, the Research Center for Precision Medicine, Southwest Medical University, Luzhou
                [2 ]Department of Pathology, Hunan Normal University College of Medicine, Changsha
                [3 ]State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR)
                [4 ]Reproductive and Genetic Center, the Central Hospital of Xiangtan City, Xiangtan
                [5 ]Department of Obstetrics and Gynecology, First Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
                Author notes
                Correspondence: Junjiang Fu; Xiaodong Fu, Southwest Medical University, 3-319 Zhongshan Road, Luzhou City, China, 646000, Tel +86 830 3160 283, Email fujunjiang@ 123456hotmail.com ; dongerfu@ 123456163.com
                Article
                tacg-11-001
                10.2147/TACG.S144383
                5741072
                29296092
                db1021c6-6937-4e25-bd5b-63480fc4c4b2
                © 2018 Yang et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                choroideremia,chm gene,mutation,amplification refractory mutation system (arms),prenatal diagnosis,evaluation

                Comments

                Comment on this article