69
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Synthesis and characterization of Au core-Au-Ag shell nanoparticles from gold seeds: impacts of glycine concentration and pH.

      Journal of Colloid and Interface Science

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This paper describes the preparation of Au core-Au-Ag shell nanoparticles (NPs) in different morphologies by controlling both the pH and the glycine concentration. Using a seed-growth method, we prepared high-quality Au core-Au-Ag shell NPs from a glycine solution under alkaline conditions (pH>8.5). By controlling both the pH and the glycine concentration, we prepared dumbbell-shaped and peanut-shaped Au core-Au-Ag shell NPs readily by depositing gold and silver, reduced by ascorbate, onto the gold nanorods. We have found that the glycine concentration that is optimal for preparing high-quality Au core-Au-Ag shell NPs differs at the various values of pH. At pH<8.5, the glycine concentration is not important, but, when preparing dumbbell- and peanut-shaped Au core-Au-Ag shell NPs, it should be greater than 50 mM and greater than 20 mM at pH 9.5 and 10.5, respectively. Glycine plays a number of roles during the synthesis of the Au core-Au-Ag shell NPs by controlling the solution pH, altering the reduction potentials of gold and silver ions through forming complexes with metal ions (Au(+) and Ag(+)), minimizing the formation of Ag(2)O, AgCl, and AgBr precipitates, and stabilizing the thus-prepared NPs. At pH 9.7, we observed the changes in the morphologies of the Au core-Au-Ag shell NPs-from regular (rectangular) to peanut- and dumbbell-shaped, and finally to jewel-, diamond-, and/or sphere-shaped-that occurred during the course of a 60-min reaction. In addition, we were able to affect the shapes and sizes of the Au core-Au-Ag shell NPs by controlling the reaction time.

          Related collections

          Author and article information

          Journal
          16777126
          10.1016/j.jcis.2006.04.079

          Comments

          Comment on this article