0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cannabis Use: An Uncommon Cause of Hypokalemia-Induced Acute Paralysis

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Severe hypokalemia can have life-threatening complications such as significant muscle weakness, ileus, rhabdomyolysis, and respiratory failure. Here, we report a case of a 33-year-old male who presented with worsening lower extremity weakness and falls after smoking marijuana for six months. Initial labs showed severe hypokalemia. EKG was remarkable for a first-degree AV block, widened QRS complex, and ST segment depression. Intravenous potassium replacement resulted in complete resolution of lower extremity motor weakness. Our case highlights the underdiagnosed association of marijuana use with clinically significant hypokalemia and the rare presentation of severe hypokalemia with acute paralysis.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations.

          Two proteins with seven transmembrane-spanning domains typical of guanosine-nucleotide-binding-protein-coupled receptors have been identified as cannabinoid receptors; the central cannabinoid receptor, CB1, and the peripheral cannabinoid receptor, CB2, initially described in rat brain and spleen, respectively. Here, we report the distribution patterns for both CB1 and CB2 transcripts in human immune cells and in several human tissues, as analysed using a highly sensitive and quantitative PCR-based method. CB1 was mainly expressed in the central nervous system and, to a lower extent, in several peripheral tissues such as adrenal gland, heart, lung, prostate, uterus, ovary, testis, bone marrow, thymus and tonsils. In contrast, the CB2 gene, which is not expressed in the brain, was particularly abundant in immune tissues, with an expression level 10-100-fold higher than that of CB1. Although CB2 mRNA was also detected in some other peripheral tissues, its level remained very low. In spleen and tonsils, the CB2 mRNA content was equivalent to that of CB1 mRNA in the central nervous system. Among the main human blood cell subpopulations, the distribution pattern of the CB2 mRNA displayed important variations. The rank order of CB2 mRNA levels in these cells was B-cells > natural killer cells > monocytes > polymorphonuclear neutrophil cells > T8 cells > T4 cells. The same rank order was also established in human cell lines belonging to the myeloid, monocytic and lymphoid lineages. The prevailing expression of the CB2 gene in immune tissues was confirmed by Northern-blot analysis. In addition, the expression of the CB2 protein was demonstrated by an immunohistological analysis performed on tonsil sections using specific anti-(human CB2) IgG; this experiment showed that CB2 expression was restricted to B-lymphocyte-enriched areas of the mantle of secondary lymphoid follicles. These results suggest that (a) CB1 and CB2 can be considered as tissue-selective antigens of the central nervous system and immune system, respectively, and (b) cannabinoids may exert specific receptor-mediated actions on the immune system through the CB2 receptor.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effects of cannabinoids on the brain.

            Cannabinoids have a long history of consumption for recreational and medical reasons. The primary active constituent of the hemp plant Cannabis sativa is delta9-tetrahydrocannabinol (delta9-THC). In humans, psychoactive cannabinoids produce euphoria, enhancement of sensory perception, tachycardia, antinociception, difficulties in concentration and impairment of memory. The cognitive deficiencies seem to persist after withdrawal. The toxicity of marijuana has been underestimated for a long time, since recent findings revealed delta9-THC-induced cell death with shrinkage of neurons and DNA fragmentation in the hippocampus. The acute effects of cannabinoids as well as the development of tolerance are mediated by G protein-coupled cannabinoid receptors. The CB1 receptor and its splice variant CB1A, are found predominantly in the brain with highest densities in the hippocampus, cerebellum and striatum. The CB2 receptor is found predominantly in the spleen and in haemopoietic cells and has only 44% overall nucleotide sequence identity with the CB1 receptor. The existence of this receptor provided the molecular basis for the immunosuppressive actions of marijuana. The CB1 receptor mediates inhibition of adenylate cyclase, inhibition of N- and P/Q-type calcium channels, stimulation of potassium channels, and activation of mitogen-activated protein kinase. The CB2 receptor mediates inhibition of adenylate cyclase and activation of mitogen-activated protein kinase. The discovery of endogenous cannabinoid receptor ligands, anandamide (N-arachidonylethanolamine) and 2-arachidonylglycerol made the notion of a central cannabinoid neuromodulatory system plausible. Anandamide is released from neurons upon depolarization through a mechanism that requires calcium-dependent cleavage from a phospholipid precursor in neuronal membranes. The release of anandamide is followed by rapid uptake into the plasma and hydrolysis by fatty-acid amidohydrolase. The psychoactive cannabinoids increase the activity of dopaminergic neurons in the ventral tegmental area-mesolimbic pathway. Since these dopaminergic circuits are known to play a pivotal role in mediating the reinforcing (rewarding) effects of the most drugs of abuse, the enhanced dopaminergic drive elicited by the cannabinoids is thought to underlie the reinforcing and abuse properties of marijuana. Thus, cannabinoids share a final common neuronal action with other major drugs of abuse such as morphine, ethanol and nicotine in producing facilitation of the mesolimbic dopamine system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endocannabinoids and Their Pharmacological Actions.

              The endocannabinoid system consists of G protein-coupled cannabinoid CB(1) and CB(2) receptors, of endogenous compounds known as endocannabinoids that can target these receptors, of enzymes that catalyse endocannabinoid biosynthesis and metabolism, and of processes responsible for the cellular uptake of some endocannabinoids. This review presents in vitro evidence that most or all of the following 13 compounds are probably orthosteric endocannabinoids since they have all been detected in mammalian tissues in one or more investigation, and all been found to bind to cannabinoid receptors, probably to an orthosteric site: anandamide, 2-arachidonoylglycerol, noladin ether, dihomo-γ-linolenoylethanolamide, virodhamine, oleamide, docosahexaenoylethanolamide, eicosapentaenoylethanolamide, sphingosine, docosatetraenoylethanolamide, N-arachidonoyldopamine, N-oleoyldopamine and haemopressin. In addition, this review describes in vitro findings that suggest that the first eight of these compounds can activate CB(1) and sometimes also CB(2) receptors and that another two of these compounds are CB(1) receptor antagonists (sphingosine) or antagonists/inverse agonists (haemopressin). Evidence for the existence of at least three allosteric endocannabinoids is also presented. These endogenous compounds appear to target allosteric sites on cannabinoid receptors in vitro, either as negative allosteric modulators of the CB1 receptor (pepcan-12 and pregnenolone) or as positive allosteric modulators of this receptor (lipoxin A(4)) or of the CB(2) receptor (pepcan-12). Also discussed are current in vitro data that indicate the extent to which some established or putative orthosteric endocannabinoids seem to target non-cannabinoid receptors and ion channels, particularly at concentrations at which they have been found to interact with CB(1) or CB(2) receptors.
                Bookmark

                Author and article information

                Journal
                Cureus
                Cureus
                2168-8184
                Cureus
                Cureus (Palo Alto (CA) )
                2168-8184
                30 August 2023
                August 2023
                : 15
                : 8
                : e44393
                Affiliations
                [1 ] Internal Medicine, Overland Park Regional Medical Center, Overland Park, USA
                [2 ] Internal Medicine, Kansas City University of Medicine and Biosciences, Kansas City, USA
                Author notes
                Article
                10.7759/cureus.44393
                10541681
                37786569
                dbe3f273-c97a-4fea-a5d1-c6bbf52b0d00
                Copyright © 2023, Singh et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 August 2023
                Categories
                Internal Medicine
                Nephrology
                Substance Use and Addiction

                acute hypokalemic paralysis,severe hypokalemia etiologies,cannabis use complications,severe hypokalemia induced paralysis,cannabis induced hypokalemia

                Comments

                Comment on this article