6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Genetics of developmental dysplasia of the hip

      , , ,
      European Journal of Medical Genetics
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion.

          The seven-transmembrane receptor CX(3)CR1 is a specific receptor for the novel CX(3)C chemokine fractalkine (FKN) (neurotactin). In vitro data suggest that membrane anchoring of FKN, and the existence of a shed, soluble FKN isoform allow for both adhesive and chemoattractive properties. Expression on activated endothelium and neurons defines FKN as a potential target for therapeutic intervention in inflammatory conditions, particularly central nervous system diseases. To investigate the physiological function of CX(3)CR1-FKN interactions, we generated a mouse strain in which the CX(3)CR1 gene was replaced by a green fluorescent protein (GFP) reporter gene. In addition to the creation of a mutant CX(3)CR1 locus, this approach enabled us to assign murine CX(3)CR1 expression to monocytes, subsets of NK and dendritic cells, and the brain microglia. Analysis of CX(3)CR1-deficient mice indicates that CX(3)CR1 is the only murine FKN receptor. Yet, defying anticipated FKN functions, absence of CX(3)CR1 interferes neither with monocyte extravasation in a peritonitis model nor with DC migration and differentiation in response to microbial antigens or contact sensitizers. Furthermore, a prominent response of CX(3)CR1-deficient microglia to peripheral nerve injury indicates unimpaired neuronal-glial cross talk in the absence of CX(3)CR1.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of Hox genes during vertebrate limb development.

            The potential role of Hox genes during vertebrate limb development was brought into focus by gene expression analyses in mice (P Dolle, JC Izpisua-Belmonte, H Falkenstein, A Renucci, D Duboule, Nature 1989, 342:767-772), at a time when limb growth and patterning were thought to depend upon two distinct and rather independent systems of coordinates; one for the anterior-to-posterior axis and the other for the proximal-to-distal axis (see D Duboule, P Dolle, EMBO J 1989, 8:1497-1505). Over the past years, the function and regulation of these genes have been addressed using both gain-of-function and loss-of-function approaches in chick and mice. The use of multiple mutations either in cis-configuration in trans-configuration or in cis/trans configurations, has confirmed that Hox genes are essential for proper limb development, where they participate in both the growth and organization of the structures. Even though their molecular mechanisms of action remain somewhat elusive, the results of these extensive genetic analyses confirm that, during the development of the limbs, the various axes cannot be considered in isolation from each other and that a more holistic view of limb development should prevail over a simple cartesian, chess grid-like approach of these complex structures. With this in mind, the functional input of Hox genes during limb growth and development can now be re-assessed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dickkopf-1 is a master regulator of joint remodeling.

              Degenerative and inflammatory joint diseases lead to a destruction of the joint architecture. Whereas degenerative osteoarthritis results in the formation of new bone, rheumatoid arthritis leads to bone resorption. The molecular basis of these different patterns of joint disease is unknown. By inhibiting Dickkopf-1 (DKK-1), a regulatory molecule of the Wnt pathway, we were able to reverse the bone-destructive pattern of a mouse model of rheumatoid arthritis to the bone-forming pattern of osteoarthritis. In this way, no overall bone erosion resulted, although bony nodules, so-called osteophytes, did form. We identified tumor necrosis factor-alpha (TNF) as a key inducer of DKK-1 in the mouse inflammatory arthritis model and in human rheumatoid arthritis. These results suggest that the Wnt pathway is a key regulator of joint remodeling.
                Bookmark

                Author and article information

                Journal
                European Journal of Medical Genetics
                European Journal of Medical Genetics
                Elsevier BV
                17697212
                September 2020
                September 2020
                : 63
                : 9
                : 103990
                Article
                10.1016/j.ejmg.2020.103990
                32540376
                dc3cf6da-bc80-4727-a502-1b3c2786a479
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article