32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An in silico platform for predicting, screening and designing of antihypertensive peptides

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High blood pressure or hypertension is an affliction that threatens millions of lives worldwide. Peptides from natural origin have been shown recently to be highly effective in lowering blood pressure. In the present study, we have framed a platform for predicting and designing novel antihypertensive peptides. Due to a large variation found in the length of antihypertensive peptides, we divided these peptides into four categories (i) Tiny peptides, (ii) small peptides, (iii) medium peptides and (iv) large peptides. First, we developed SVM based regression models for tiny peptides using chemical descriptors and achieved maximum correlation of 0.701 and 0.543 for dipeptides and tripeptides, respectively. Second, classification models were developed for small peptides and achieved maximum accuracy of 76.67%, 72.04% and 77.39% for tetrapeptide, pentapeptide and hexapeptides, respectively. Third, we have developed a model for medium peptides using amino acid composition and achieved maximum accuracy of 82.61%. Finally, we have developed a model for large peptides using amino acid composition and achieved maximum accuracy of 84.21%. Based on the above study, a web-based platform has been developed for locating antihypertensive peptides in a protein, screening of peptides and designing of antihypertensive peptides.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Data mining in bioinformatics using Weka.

          The Weka machine learning workbench provides a general-purpose environment for automatic classification, regression, clustering and feature selection-common data mining problems in bioinformatics research. It contains an extensive collection of machine learning algorithms and data pre-processing methods complemented by graphical user interfaces for data exploration and the experimental comparison of different machine learning techniques on the same problem. Weka can process data given in the form of a single relational table. Its main objectives are to (a) assist users in extracting useful information from data and (b) enable them to easily identify a suitable algorithm for generating an accurate predictive model from it. http://www.cs.waikato.ac.nz/ml/weka.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            CancerPPD: a database of anticancer peptides and proteins

            CancerPPD (http://crdd.osdd.net/raghava/cancerppd/) is a repository of experimentally verified anticancer peptides (ACPs) and anticancer proteins. Data were manually collected from published research articles, patents and from other databases. The current release of CancerPPD consists of 3491 ACP and 121 anticancer protein entries. Each entry provides comprehensive information related to a peptide like its source of origin, nature of the peptide, anticancer activity, N- and C-terminal modifications, conformation, etc. Additionally, CancerPPD provides the information of around 249 types of cancer cell lines and 16 different assays used for testing the ACPs. In addition to natural peptides, CancerPPD contains peptides having non-natural, chemically modified residues and D-amino acids. Besides this primary information, CancerPPD stores predicted tertiary structures as well as peptide sequences in SMILES format. Tertiary structures of peptides were predicted using the state-of-art method, PEPstr and secondary structural states were assigned using DSSP. In order to assist users, a number of web-based tools have been integrated, these include keyword search, data browsing, sequence and structural similarity search. We believe that CancerPPD will be very useful in designing peptide-based anticancer therapeutics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prediction of CTL epitopes using QM, SVM and ANN techniques.

              Cytotoxic T lymphocyte (CTL) epitopes are potential candidates for subunit vaccine design for various diseases. Most of the existing T cell epitope prediction methods are indirect methods that predict MHC class I binders instead of CTL epitopes. In this study, a systematic attempt has been made to develop a direct method for predicting CTL epitopes from an antigenic sequence. This method is based on quantitative matrix (QM) and machine learning techniques such as Support Vector Machine (SVM) and Artificial Neural Network (ANN). This method has been trained and tested on non-redundant dataset of T cell epitopes and non-epitopes that includes 1137 experimentally proven MHC class I restricted T cell epitopes. The accuracy of QM-, ANN- and SVM-based methods was 70.0, 72.2 and 75.2%, respectively. The performance of these methods has been evaluated through Leave One Out Cross-Validation (LOOCV) at a cutoff score where sensitivity and specificity was nearly equal. Finally, both machine-learning methods were used for consensus and combined prediction of CTL epitopes. The performances of these methods were evaluated on blind dataset where machine learning-based methods perform better than QM-based method. We also demonstrated through subgroup analysis that our methods can discriminate between T-cell epitopes and MHC binders (non-epitopes). In brief this method allows prediction of CTL epitopes using QM, SVM, ANN approaches. The method also facilitates prediction of MHC restriction in predicted T cell epitopes.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                27 July 2015
                2015
                : 5
                : 12512
                Affiliations
                [1 ]Bioinformatics Centre, CSIR-Institute of Microbial Technology , Chandigarh-160036, India
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep12512
                10.1038/srep12512
                4515604
                26213115
                dc4d9f23-8065-4b88-b073-abb99640d482
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 21 January 2015
                : 19 June 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article