14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tissue Regeneration and Biomineralization in Sea Urchins: Role of Notch Signaling and Presence of Stem Cell Markers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Echinoderms represent a phylum with exceptional regenerative capabilities that can reconstruct both external appendages and internal organs. Mechanistic understanding of the cellular pathways involved in regeneration in these animals has been hampered by the limited genomic tools and limited ability to manipulate regenerative processes. We present a functional assay to investigate mechanisms of tissue regeneration and biomineralization by measuring the regrowth of amputated tube feet (sensory and motor appendages) and spines in the sea urchin, Lytechinus variegatus. The ability to manipulate regeneration was demonstrated by concentration-dependent inhibition of regrowth of spines and tube feet by treatment with the mitotic inhibitor, vincristine. Treatment with the gamma-secretase inhibitor DAPT resulted in a concentration-dependent inhibition of regrowth, indicating that both tube feet and spine regeneration require functional Notch signaling. Stem cell markers (Piwi and Vasa) were expressed in tube feet and spine tissue, and Vasa-positive cells were localized throughout the epidermis of tube feet by immunohistochemistry, suggesting the existence of multipotent progenitor cells in these highly regenerative appendages. The presence of Vasa protein in other somatic tissues (e.g. esophagus, radial nerve, and a sub-population of coelomocytes) suggests that multipotent cells are present throughout adult sea urchins and may contribute to normal homeostasis in addition to regeneration. Mechanistic insight into the cellular pathways governing the tremendous regenerative capacity of echinoderms may reveal processes that can be modulated for regenerative therapies, shed light on the evolution of regeneration, and enable the ability to predict how these processes will respond to changing environmental conditions.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis.

          We have studied the role of Notch-1 and its antagonist Numb in the activation of satellite cells during postnatal myogenesis. Activation of Notch-1 promoted the proliferation of myogenic precursor cells expressing the premyoblast marker Pax3. Attenuation of Notch signaling by increases in Numb expression led to the commitment of progenitor cells to the myoblast cell fate and the expression of myogenic regulatory factors, desmin, and Pax7. In many intermediate progenitor cells, Numb was localized asymmetrically in actively dividing cells, suggesting an asymmetric cell division and divergent cell fates of daughter cells. The results indicate that satellite cell activation results in a heterogeneous population of precursor cells with respect to Notch-1 activity and that the balance between Notch-1 and Numb controls cellular homeostasis and cell fate determination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Skin stem cells: rising to the surface

            The skin epidermis and its appendages provide a protective barrier that is impermeable to harmful microbes and also prevents dehydration. To perform their functions while being confronted with the physicochemical traumas of the environment, these tissues undergo continual rejuvenation through homeostasis, and, in addition, they must be primed to undergo wound repair in response to injury. The skin's elixir for maintaining tissue homeostasis, regenerating hair, and repairing the epidermis after injury is its stem cells, which reside in the adult hair follicle, sebaceous gland, and epidermis. Stem cells have the remarkable capacity to both self-perpetuate and also give rise to the differentiating cells that constitute one or more tissues. In recent years, scientists have begun to uncover the properties of skin stem cells and unravel the mysteries underlying their remarkable capacity to perform these feats. In this paper, I outline the basic lineages of the skin epithelia and review some of the major findings about mammalian skin epithelial stem cells that have emerged in the past five years.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bridging the regeneration gap: genetic insights from diverse animal models.

              Significant progress has recently been made in our understanding of animal regenerative biology, spurred on by the use of a wider range of model organisms and an increasing ability to use genetic tools in traditional models of regeneration. This progress has begun to delineate differences and similarities in the regenerative capabilities and mechanisms among diverse animal species, and to address some of the key questions about the molecular and cell biology of regeneration. Our expanding knowledge in these areas not only provides insights into animal biology in general, but also has important implications for regenerative medicine and stem-cell biology.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                12 August 2015
                2015
                : 10
                : 8
                : e0133860
                Affiliations
                [001]Molecular Discovery Laboratory, Bermuda Institute of Ocean Sciences, St. George’s GE 01, Bermuda
                Chang Gung University, TAIWAN
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: HCR AGB. Performed the experiments: HCR CEE JMM AGB. Analyzed the data: HCR CEE JMM AGB. Contributed reagents/materials/analysis tools: AGB. Wrote the paper: HCR AGB.

                Article
                PONE-D-15-06297
                10.1371/journal.pone.0133860
                4534296
                26267358
                dc8410bc-6b6b-4f81-9dac-e9c135577563
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 10 February 2015
                : 2 July 2015
                Page count
                Figures: 5, Tables: 1, Pages: 15
                Funding
                Funding was gratefully received from the Christian Humann Foundation and a Bermuda Charitable Trust. CEE was supported by the National Science Foundation Research for Undergraduates Program (Grant no 1262880). JMM was funded through a Princeton Environmental Institute internship at the Bermuda Institute for Ocean Sciences.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article