22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Novel Fibronectin Binding Motif in MSCRAMMs Targets F3 Modules

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          BBK32 is a surface expressed lipoprotein and fibronectin (Fn)-binding microbial surface component recognizing adhesive matrix molecule (MSCRAMM) of Borrelia burgdorferi, the causative agent of Lyme disease. Previous studies from our group showed that BBK32 is a virulence factor in experimental Lyme disease and located the Fn-binding region to residues 21–205 of the lipoprotein.

          Methodology/Principal Findings

          Studies aimed at identifying interacting sites between BBK32 and Fn revealed an interaction between the MSCRAMM and the Fn F3 modules. Further analysis of this interaction showed that BBK32 can cause the aggregation of human plasma Fn in a similar concentration-dependent manner to that of anastellin, the superfibronectin (sFn) inducing agent. The resulting Fn aggregates are conformationally distinct from plasma Fn as indicated by a change in available thermolysin cleavage sites. Recombinant BBK32 and anastellin affect the structure of Fn matrices formed by cultured fibroblasts and inhibit endothelial cell proliferation similarly. Within BBK32, we have located the sFn-forming activity to a region between residues 160 and 175 which contains two sequence motifs that are also found in anastellin. Synthetic peptides mimicking these motifs induce Fn aggregation, whereas a peptide with a scrambled sequence motif was inactive, suggesting that these motifs represent the sFn-inducing sequence.

          Conclusions/Significance

          We conclude that BBK32 induces the formation of Fn aggregates that are indistinguishable from those formed by anastellin. The results of this study provide evidence for how bacteria can target host proteins to manipulate host cell activities.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Fibronectin fibrillogenesis, a cell-mediated matrix assembly process.

          The extracellular matrix provides a framework for cell adhesion, supports cell movement, and serves to compartmentalize tissues into functional units. Fibronectin is a core component of many extracellular matrices where it regulates a variety of cell activities through direct interactions with cell surface integrin receptors. Fibronectin is synthesized by many adherent cells which then assemble it into a fibrillar network. The assembly process is integrin-dependent and fibronectin-integrin interactions initiate a step-wise process involving conformational activation of fibronectin outside and organization of the actin cytoskeleton inside. During assembly, fibronectin undergoes conformational changes that expose fibronectin-binding sites and promote intermolecular interactions needed for fibril formation. In this review, the main steps of fibronectin assembly are described and recent studies on fibronectin conformational changes are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Integrin Dynamics and Matrix Assembly

            Fibronectin matrix assembly is a multistep, integrin-dependent process. To investigate the role of integrin dynamics in fibronectin fibrillogenesis, we developed an antibody-chasing technique for simultaneous tracking of two integrin populations by different antibodies. We established that whereas the vitronectin receptor αvβ3 remains within focal contacts, the fibronectin receptor α5β1 translocates from focal contacts into and along extracellular matrix (ECM) contacts. This escalator-like translocation occurs relative to the focal contacts at 6.5 ± 0.7 μm/h and is independent of cell migration. It is induced by ligation of α5β1 integrins and depends on interactions with a functional actin cytoskeleton and vitronectin receptor ligation. During cell spreading, translocation of ligand-occupied α5β1 integrins away from focal contacts and along bundles of actin filaments generates ECM contacts. Tensin is a primary cytoskeletal component of these ECM contacts, and a novel dominant-negative inhibitor of tensin blocked ECM contact formation, integrin translocation, and fibronectin fibrillogenesis without affecting focal contacts. We propose that translocating α5β1 integrins induce initial fibronectin fibrillogenesis by transmitting cytoskeleton-generated tension to extracellular fibronectin molecules. Blocking this integrin translocation by a variety of treatments prevents the formation of ECM contacts and fibronectin fibrillogenesis. These studies identify a localized, directional, integrin translocation mechanism for matrix assembly.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inactivation of the fibronectin-binding adhesin gene bbk32 significantly attenuates the infectivity potential of Borrelia burgdorferi.

              Borrelia burgdorferi, the aetiological agent of Lyme disease, utilizes multiple adhesins to interact with both the arthropod vector and mammalian hosts it colonizes. One such adhesive molecule is a surface-exposed fibronectin-binding lipoprotein, designated BBK32. Previous characterization of BBK32-mediated fibronectin binding has been limited to biochemical analyses due to the difficulty in mutagenizing infectious isolates of B. burgdorferi. Here we report an alternative method to inactivate bbk32 via allelic exchange through use of a low-passage variant of B. burgdorferi strain B31 that is more readily transformed. The resulting mutant does not synthesize BBK32, exhibits reduced fibronectin binding in solid phase assays and manifests decreased interactions with mouse fibroblast cells relative to both the infectious parent and genetic complement. Furthermore, the bbk32 knockout was significantly attenuated in the murine model of Lyme disease, whereas a genetically complemented control was not, indicating that BBK32 is necessary for maximal B. burgdorferi infection in the mouse. To our knowledge this is the first mutational analysis of a surface exposed, functional borrelial lipoprotein adhesin whose activity is associated with the mammalian host environment. By analogy with other pathogens that utilize fibronectin binding as an important virulence determinant, the borrelial fibronectin-BBK32 interaction is likely to be important in B. burgdorferi-specific pathogenic mechanisms, particularly in the context of dissemination, secondary colonization and/or persistence.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2009
                30 April 2009
                : 4
                : 4
                : e5412
                Affiliations
                [1 ]Institute of Biosciences and Technology, Texas A&M Health Science Center, College Station, Texas, United States of America
                [2 ]University of Texas Health Science Center Houston, Houston, Texas, United States of America
                [3 ]Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, College Station, Texas, United States of America
                [4 ]Department of Biology and Chemistry, University of York, York, United Kingdom
                University of California Merced, United States of America
                Author notes

                Conceived and designed the experiments: SP MH. Performed the experiments: SP. Analyzed the data: SP JS JP MH. Contributed reagents/materials/analysis tools: SP XL. Wrote the paper: SP MH.

                Article
                08-PONE-RA-07861R1
                10.1371/journal.pone.0005412
                2671840
                19404402
                dcddd452-0004-41b7-97ce-09145afc199f
                Prabhakaran et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 19 December 2008
                : 26 March 2009
                Page count
                Pages: 10
                Categories
                Research Article
                Biochemistry
                Infectious Diseases
                Biochemistry/Biomacromolecule-Ligand Interactions
                Biochemistry/Protein Chemistry
                Microbiology/Cellular Microbiology and Pathogenesis
                Infectious Diseases/Bacterial Infections

                Uncategorized
                Uncategorized

                Comments

                Comment on this article