24
views
0
recommends
+1 Recommend
1 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Thyroid hormones in the regulation of brown adipose tissue thermogenesis

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A normal thyroid status is crucial for body temperature homeostasis, as thyroid hormone regulates both heat loss and conservation as well as heat production in the thermogenic tissues. Brown adipose tissue (BAT) is the major site of non-shivering thermogenesis and an important target of thyroid hormone action. Thyroid hormone not only regulates the tissue’s sensitivity to sympathetic stimulation by norepinephrine but also the expression of uncoupling protein 1, the key driver of BAT thermogenesis. Vice versa, sympathetic stimulation of BAT triggers the expression of deiodinase type II, an enzyme that enhances local thyroid hormone availability and signaling. This review summarizes the current knowledge on how thyroid hormone controls BAT thermogenesis, aiming to dissect the direct actions of the hormone in BAT and its indirect actions via the CNS, browning of white adipose tissue or heat loss over body surfaces. Of particular relevance is the apparent dose dependency of the observed effects, as we find that minor or moderate changes in thyroid hormone levels often have different effects as compared to high pharmacological doses. Moreover, we conclude that the more recent findings require a reevaluation of older studies, as key aspects such as heat loss or central BAT activation may not have received the necessary attention during the interpretation of these early findings. Finally, we provide a list of what we believe are the most relevant questions in the field that to date are still enigmatic and require further studies.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Brown adipose tissue: function and physiological significance.

          The function of brown adipose tissue is to transfer energy from food into heat; physiologically, both the heat produced and the resulting decrease in metabolic efficiency can be of significance. Both the acute activity of the tissue, i.e., the heat production, and the recruitment process in the tissue (that results in a higher thermogenic capacity) are under the control of norepinephrine released from sympathetic nerves. In thermoregulatory thermogenesis, brown adipose tissue is essential for classical nonshivering thermogenesis (this phenomenon does not exist in the absence of functional brown adipose tissue), as well as for the cold acclimation-recruited norepinephrine-induced thermogenesis. Heat production from brown adipose tissue is activated whenever the organism is in need of extra heat, e.g., postnatally, during entry into a febrile state, and during arousal from hibernation, and the rate of thermogenesis is centrally controlled via a pathway initiated in the hypothalamus. Feeding as such also results in activation of brown adipose tissue; a series of diets, apparently all characterized by being low in protein, result in a leptin-dependent recruitment of the tissue; this metaboloregulatory thermogenesis is also under hypothalamic control. When the tissue is active, high amounts of lipids and glucose are combusted in the tissue. The development of brown adipose tissue with its characteristic protein, uncoupling protein-1 (UCP1), was probably determinative for the evolutionary success of mammals, as its thermogenesis enhances neonatal survival and allows for active life even in cold surroundings.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional Brown Adipose Tissue in Healthy Adults

            Using positron-emission tomography (PET), we found that cold-induced glucose uptake was increased by a factor of 15 in paracervical and supraclavicular adipose tissue in five healthy subjects. We obtained biopsy specimens of this tissue from the first three consecutive subjects and documented messenger RNA (mRNA) and protein levels of the brown-adipocyte marker, uncoupling protein 1 (UCP1). Together with morphologic assessment, which showed numerous multilocular, intracellular lipid droplets, and with the results of biochemical analysis, these findings document the presence of substantial amounts of metabolically active brown adipose tissue in healthy adult humans. 2009 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Physiological and molecular basis of thyroid hormone action.

              P M Yen (2001)
              Thyroid hormones (THs) play critical roles in the differentiation, growth, metabolism, and physiological function of virtually all tissues. TH binds to receptors that are ligand-regulatable transcription factors belonging to the nuclear hormone receptor superfamily. Tremendous progress has been made recently in our understanding of the molecular mechanisms that underlie TH action. In this review, we present the major advances in our knowledge of the molecular mechanisms of TH action and their implications for TH action in specific tissues, resistance to thyroid hormone syndrome, and genetically engineered mouse models.
                Bookmark

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                February 2021
                20 January 2021
                : 10
                : 2
                : R106-R115
                Affiliations
                [1 ]Institute for Endocrinology and Diabetes , Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
                Author notes
                Correspondence should be addressed to J Mittag: jens.mittag@ 123456uni-luebeck.de
                Article
                EC-20-0562
                10.1530/EC-20-0562
                7983518
                33491659
                dd76150d-5078-4a85-b50e-7e9dea81a6f2
                © 2021 The authors

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 07 January 2021
                : 20 January 2021
                Categories
                Review

                thermogenesis,bat,thyroid hormone receptor,uncoupling protein 1,heat loss,adrenergic sensitivity

                Comments

                Comment on this article