24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A human origin strain Lactobacillus acidophilus DDS-1 exhibits superior in vitro probiotic efficacy in comparison to plant or dairy origin probiotics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: The health benefits of probiotics are well established and known to be strain-specific. However, the role of probiotics obtained from different origins and their efficacy largely remains unexplored. The aim of this study is to investigate the in vitro efficacy of probiotics from different origins.

          Methods: Probiotic strains utilized in this study include Lactobacillus acidophilus DDS-1 (human origin), Bifidobacterium animalis ssp. lactis UABla-12 (human origin), L. plantarum UALp-05 (plant origin) and Streptococcus thermophilus UASt-09 (dairy origin). Screening assays such as in vitro digestion simulation, adhesion, cell viability and cytokine release were used to evaluate the probiotic potential.

          Results: All strains showed good resistance in the digestion simulation process, especially DDS-1 and UALp-05, which survived up to a range of 10 7 to 10 8 CFU/mL from an initial concentration of 10 9 CFU/mL. Two human colonic mucus-secreting cells, HT-29 and LS174T, were used to assess the adhesion capacity, cytotoxicity/viability, and cytokine quantification. All strains exhibited good adhesion capacity. No significant cellular cytotoxicity or loss in cell viability was observed. DDS-1 and UALp-05 significantly upregulated anti-inflammatory IL-10 and downregulated pro-inflammatory TNF-α cytokine production. All the strains were able to downregulate IL-8 cytokine levels.

          Conclusion: Of the 4 strains tested, DDS-1 demonstrated superior survival rates, good adhesion capacity and strong immunomodulatory effect under different experimental conditions.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions.

          Chitosan was used as a coating material to improve encapsulation of a probiotic and prebiotic in calcium alginate beads. Chitosan-coated alginate microspheres were produced to encapsulate Lactobacillus gasseri (L) and Bifidobacterium bifidum (B) as probiotics and the prebiotic quercetin (Q) with the objective of enhancing survival of the probiotic bacteria and keeping intact the prebiotic during exposure to the adverse conditions of the gastro-intestinal tract. The encapsulation yield for viable cells for chitosan-coated alginate microspheres with quercetin (L+Q and B+Q) was very low. These results, together with the study about the survival of microspheres with quercetin during storage at 4 degrees C, demonstrated that probiotic bacteria microencapsulated with quercetin did not survive. Owing to this, quercetin and L. gasseri or B. bifidum were microencapsulated separately. Microencapsulated L. gasseri and microencapsulated B. bifidum were resistant to simulated gastric conditions (pH 2.0, 2h) and bile solution (3%, 2h), resulting in significantly (p<0.05) improved survival when compared with free bacteria. This work showed that the microencapsulation of L. gasseri and B. bifidum with alginate and a chitosan coating offers an effective means of delivery of viable bacterial cells to the colon and maintaining their survival during simulated gastric and intestinal juice. Copyright 2010 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food.

            Food is considered a major route of exposure to many contaminants. Only the fraction of the contaminant that is released from the food (bioaccessibility) and is bioavailable can exert toxic effects. Insufficient knowledge on the bioavailability may hamper an accurate risk assessment of ingested contaminants in humans. This paper describes the applicability of an in vitro digestion model allowing for measurement of the bioaccessibility of ingested mycotoxins from food as an indicator of oral bioavailability. Bioaccessibility of aflatoxin B(1) from peanut slurry and ochratoxin A from buckwheat was high, 94% and 100%, respectively, and could be determined reproducibly. With the in vitro digestion model, the bioaccessibilities of aflatoxin B(1) and ochratoxin A in the presence of four different absorption modulators were in five out of six situations in accordance with the in vivo effects in humans and animals. By determining the effect of chlorophyllin on the transport of aflatoxin B(1) across the intestinal Caco-2 cells, also the sixth combination was in agreement with data in humans. Hence, the in vitro digestion model, combined with Caco-2 cells, is a powerful experimental tool, which can aid to a more accurate risk assessment of ingested contaminants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars.

              Lactobacillus rhamnosus GG is an industrially significant probiotic strain with proven health benefits. In this study, the effect of glucose on L. rhamnosus GG survival was analyzed in simulated gastric juice at pH 2.0. It was found that the presence of 19.4 mM glucose resulted in up to 6-log10-enhanced survival following 90 min of exposure. Further work with dilute HCl confirmed that glucose was the sole component responsible. Comparative analysis with other Lactobacillus strains revealed that enhanced survival was apparent in all strains, but at different pH values. The presence of glucose at concentrations from 1 to 19.4 mM enhanced L. rhamnosus GG survival from 6.4 to 8 log10 CFU ml(-1) in simulated gastric juice. The mechanisms behind the protective effect of glucose were investigated. Addition of N',N'-dicyclohexylcarbodiimide to simulated gastric juice caused survival to collapse, which was indicative of a prominent role in inhibition of F0F1-ATPase. Further work with neomycin-resistant mutants that exhibited 38% to 48% of the F0F1-ATPase activity of the parent confirmed this, as the survival in the presence of glucose of these mutants decreased 3 x 10(6)-fold compared with the survival of the wild type (which had a viability of 8.02 log10 CFU ml(-1)). L. rhamnosus GG survival in acidic conditions occurred only in the presence of sugars that it could metabolize efficiently. To confirm the involvement of glycolysis in the glucose effect, iodoacetic acid was used to inhibit glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. The reduction in GAPDH activity caused survival to decrease by 8.30 log10 CFU ml(-1) in the presence of glucose. The data indicate that glucose provides ATP to F0F1-ATPase via glycolysis, enabling proton exclusion and thereby enhancing survival during gastric transit.
                Bookmark

                Author and article information

                Journal
                Int J Med Sci
                Int J Med Sci
                ijms
                International Journal of Medical Sciences
                Ivyspring International Publisher (Sydney )
                1449-1907
                2018
                26 May 2018
                : 15
                : 9
                : 840-848
                Affiliations
                [1 ]School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250 Australia
                [2 ]School of Land and Food, University of Tasmania, Launceston, Tasmania 7250 Australia.
                [3 ]UAS Laboratories, Madison, Wisconsin, USA.
                [4 ]School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3082 Australia.
                Author notes
                ✉ Corresponding authors: School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250 Australia. Tel: +61 3 6324 5467/0430029656 Fax: +61 3 6324 5555; Email address: ravichandra.vemuri@ 123456utas.edu.au ; rajaraman.eri@ 123456utas.edu.au

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                ijmsv15p0840
                10.7150/ijms.25004
                6036100
                30008595
                dd997400-e5d1-4ffb-b7fa-54758e0e3acb
                © Ivyspring International Publisher

                This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license ( https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 18 January 2018
                : 13 April 2018
                Categories
                Research Paper

                Medicine
                probiotics,adhesion,gastrointestinal survival,immunomodulation
                Medicine
                probiotics, adhesion, gastrointestinal survival, immunomodulation

                Comments

                Comment on this article