Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
108
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Proton-Assisted Amino Acid Transporter PAT1 Complexes with Rag GTPases and Activates TORC1 on Late Endosomal and Lysosomal Membranes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mammalian Target of Rapamycin Complex 1 (mTORC1) is activated by growth factor-regulated phosphoinositide 3-kinase (PI3K)/Akt/Rheb signalling and extracellular amino acids (AAs) to promote growth and proliferation. These AAs induce translocation of mTOR to late endosomes and lysosomes (LELs), subsequent activation via mechanisms involving the presence of intralumenal AAs, and interaction between mTORC1 and a multiprotein assembly containing Rag GTPases and the heterotrimeric Ragulator complex. However, the mechanisms by which AAs control these different aspects of mTORC1 activation are not well understood. We have recently shown that intracellular Proton-assisted Amino acid Transporter 1 (PAT1)/SLC36A1 is an essential mediator of AA-dependent mTORC1 activation. Here we demonstrate in Human Embryonic Kidney (HEK-293) cells that PAT1 is primarily located on LELs, physically interacts with the Rag GTPases and is required for normal AA-dependent mTOR relocalisation. We also use the powerful i n vivo genetic methodologies available in Drosophila to investigate the regulation of the PAT1/Rag/Ragulator complex. We show that GFP-tagged PATs reside at both the cell surface and LELs in vivo, mirroring PAT1 distribution in several normal mammalian cell types. Elevated PI3K/Akt/Rheb signalling increases intracellular levels of PATs and synergistically enhances PAT-induced growth via a mechanism requiring endocytosis. In light of the recent identification of the vacuolar H +-ATPase as another Rag-interacting component, we propose a model in which PATs function as part of an AA-sensing engine that drives mTORC1 activation from LEL compartments.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Using FlyAtlas to identify better Drosophila melanogaster models of human disease.

          FlyAtlas, a new online resource, provides the most comprehensive view yet of expression in multiple tissues of Drosophila melanogaster. Meta-analysis of the data shows that a significant fraction of the genome is expressed with great tissue specificity in the adult, demonstrating the need for the functional genomic community to embrace a wide range of functional phenotypes. Well-known developmental genes are often reused in surprising tissues in the adult, suggesting new functions. The homologs of many human genetic disease loci show selective expression in the Drosophila tissues analogous to the affected human tissues, providing a useful filter for potential candidate genes. Additionally, the contributions of each tissue to the whole-fly array signal can be calculated, demonstrating the limitations of whole-organism approaches to functional genomics and allowing modeling of a simple tissue fractionation procedure that should improve detection of weak or tissue-specific signals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bidirectional transport of amino acids regulates mTOR and autophagy.

            Amino acids are required for activation of the mammalian target of rapamycin (mTOR) kinase which regulates protein translation, cell growth, and autophagy. Cell surface transporters that allow amino acids to enter the cell and signal to mTOR are unknown. We show that cellular uptake of L-glutamine and its subsequent rapid efflux in the presence of essential amino acids (EAA) is the rate-limiting step that activates mTOR. L-glutamine uptake is regulated by SLC1A5 and loss of SLC1A5 function inhibits cell growth and activates autophagy. The molecular basis for L-glutamine sensitivity is due to SLC7A5/SLC3A2, a bidirectional transporter that regulates the simultaneous efflux of L-glutamine out of cells and transport of L-leucine/EAA into cells. Certain tumor cell lines with high basal cellular levels of L-glutamine bypass the need for L-glutamine uptake and are primed for mTOR activation. Thus, L-glutamine flux regulates mTOR, translation and autophagy to coordinate cell growth and proliferation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A complex interplay between Akt, TSC2 and the two mTOR complexes.

              Akt/PKB (protein kinase B) both regulates and is regulated by the TSC (tuberous sclerosis complex) 1-TSC2 complex. Downstream of PI3K (phosphoinositide 3-kinase), Akt phosphorylates TSC2 directly on multiple sites. Although the molecular mechanism is not well understood, these phosphorylation events relieve the inhibitory effects of the TSC1-TSC2 complex on Rheb and mTORC1 [mTOR (mammalian target of rapamycin) complex] 1, thereby activating mTORC1 in response to growth factors. Through negative-feedback mechanisms, mTORC1 activity inhibits growth factor stimulation of PI3K. This is particularly evident in cells and tumours lacking the TSC1-TSC2 complex, where Akt signalling is severely attenuated due, at least in part, to constitutive activation of mTORC1. An additional level of complexity in the relationship between Akt and the TSC1-TSC2 complex has recently been uncovered. The growth-factor-stimulated kinase activity of mTORC2 [also known as the mTOR-rictor (rapamycin-insensitive companion of mTOR) complex], which normally enhances Akt signalling by phosphorylating its hydrophobic motif (Ser(473)), was found to be defective in cells lacking the TSC1-TSC2 complex. This effect on mTORC2 can be separated from the inhibitory effects of the TSC1-TSC2 complex on Rheb and mTORC1. The present review discusses our current understanding of the increasingly complex functional interactions between Akt, the TSC1-TSC2 complex and mTOR, which are fundamentally important players in a large variety of human diseases.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                4 May 2012
                : 7
                : 5
                : e36616
                Affiliations
                [1 ]Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
                [2 ]Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
                New Mexico State University, United States of America
                Author notes

                Conceived and designed the experiments: MHO SH SK BR SMV MKS DCIG. Performed the experiments: MHO SH SK BR SMV MKS DCIG. Analyzed the data: MHO SH SK BR SMV MKS DCIG. Wrote the paper: DCIG.

                Article
                PONE-D-11-23441
                10.1371/journal.pone.0036616
                3344915
                22574197
                de629368-442c-4e0e-9b3d-164d31a9b65b
                Ögmundsdóttir et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 18 November 2011
                : 3 April 2012
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Biochemistry
                Metabolism
                Protein Metabolism
                Proteins
                Intracellular Receptors
                Protein Interactions
                Transmembrane Transport Proteins
                Macromolecular Assemblies
                Genetics
                Molecular Genetics
                Gene Identification and Analysis
                Cancer Genetics
                Gene Function
                Genetics of Disease
                Developmental Biology
                Model Organisms
                Animal Models
                Drosophila Melanogaster
                Molecular Cell Biology
                Signal Transduction
                Mechanisms of Signal Transduction
                Signal Initiation
                Signaling Cascades
                Akt Signaling Cascade
                Insulin Signaling Cascade
                Signaling in Cellular Processes
                Tor Signaling
                Transmembrane Signaling
                Signaling Pathways
                Insulin-Dependent Signal Transduction
                Cell Growth
                Medicine
                Endocrinology
                Endocrine Physiology
                Growth Factors
                Insulin
                Insulin-like Growth Factor
                Oncology
                Basic Cancer Research
                Tumor Physiology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article