7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of branched-chain amino acid metabolism in the pathogenesis of obesity and type 2 diabetes-related metabolic disturbances BCAA metabolism in type 2 diabetes

      review-article
      , ,
      Nutrition & Diabetes
      Nature Publishing Group UK
      Type 2 diabetes, Obesity

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Branched-chain amino acid (BCAA) catabolism has been considered to have an emerging role in the pathogenesis of metabolic disturbances in obesity and type 2 diabetes (T2D). Several studies showed elevated plasma BCAA levels in humans with insulin resistance and patients with T2D, although the underlying reason is unknown. Dysfunctional BCAA catabolism could theoretically be an underlying factor. In vitro and animal work collectively show that modulation of the BCAA catabolic pathway alters key metabolic processes affecting glucose homeostasis, although an integrated understanding of tissue-specific BCAA catabolism remains largely unknown, especially in humans. Proof-of-concept studies in rodents -and to a lesser extent in humans – strongly suggest that enhancing BCAA catabolism improves glucose homeostasis in metabolic disorders, such as obesity and T2D. In this review, we discuss several hypothesized mechanistic links between BCAA catabolism and insulin resistance and overview current available tools to modulate BCAA catabolism in vivo. Furthermore, this review considers whether enhancing BCAA catabolism forms a potential future treatment strategy to promote metabolic health in insulin resistance and T2D.

          Related collections

          Most cited references264

          • Record: found
          • Abstract: found
          • Article: not found

          Gut microbiota from twins discordant for obesity modulate metabolism in mice.

          The role of specific gut microbes in shaping body composition remains unclear. We transplanted fecal microbiota from adult female twin pairs discordant for obesity into germ-free mice fed low-fat mouse chow, as well as diets representing different levels of saturated fat and fruit and vegetable consumption typical of the U.S. diet. Increased total body and fat mass, as well as obesity-associated metabolic phenotypes, were transmissible with uncultured fecal communities and with their corresponding fecal bacterial culture collections. Cohousing mice harboring an obese twin's microbiota (Ob) with mice containing the lean co-twin's microbiota (Ln) prevented the development of increased body mass and obesity-associated metabolic phenotypes in Ob cage mates. Rescue correlated with invasion of specific members of Bacteroidetes from the Ln microbiota into Ob microbiota and was diet-dependent. These findings reveal transmissible, rapid, and modifiable effects of diet-by-microbiota interactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human gut microbes impact host serum metabolome and insulin sensitivity.

            Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus are identified as the main species driving the association between biosynthesis of BCAAs and insulin resistance, and in mice we demonstrate that P. copri can induce insulin resistance, aggravate glucose intolerance and augment circulating levels of BCAAs. Our findings suggest that microbial targets may have the potential to diminish insulin resistance and reduce the incidence of common metabolic and cardiovascular disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance.

              Metabolomic profiling of obese versus lean humans reveals a branched-chain amino acid (BCAA)-related metabolite signature that is suggestive of increased catabolism of BCAA and correlated with insulin resistance. To test its impact on metabolic homeostasis, we fed rats on high-fat (HF), HF with supplemented BCAA (HF/BCAA), or standard chow (SC) diets. Despite having reduced food intake and a low rate of weight gain equivalent to the SC group, HF/BCAA rats were as insulin resistant as HF rats. Pair-feeding of HF diet to match the HF/BCAA animals or BCAA addition to SC diet did not cause insulin resistance. Insulin resistance induced by HF/BCAA feeding was accompanied by chronic phosphorylation of mTOR, JNK, and IRS1Ser307 and by accumulation of multiple acylcarnitines in muscle, and it was reversed by the mTOR inhibitor, rapamycin. Our findings show that in the context of a dietary pattern that includes high fat consumption, BCAA contributes to development of obesity-associated insulin resistance.
                Bookmark

                Author and article information

                Contributors
                esther.phielix@maastrichtuniversity.nl
                Journal
                Nutr Diabetes
                Nutr Diabetes
                Nutrition & Diabetes
                Nature Publishing Group UK (London )
                2044-4052
                5 August 2022
                5 August 2022
                2022
                : 12
                : 35
                Affiliations
                GRID grid.412966.e, ISNI 0000 0004 0480 1382, Department of Nutrition and Movement Sciences, NUTRIM, School of Nutrition and Translational Research in Metabolism, , Maastricht University Medical Center, ; Maastricht, The Netherlands
                Author information
                http://orcid.org/0000-0002-0005-8523
                http://orcid.org/0000-0002-2672-0415
                Article
                213
                10.1038/s41387-022-00213-3
                9356071
                35931683
                de953fbe-5f89-4d0c-84d0-b63746b5539f
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 16 December 2021
                : 15 June 2022
                : 5 July 2022
                Categories
                Review Article
                Custom metadata
                © The Author(s) 2022

                Endocrinology & Diabetes
                type 2 diabetes,obesity
                Endocrinology & Diabetes
                type 2 diabetes, obesity

                Comments

                Comment on this article