21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of ethylcellulose and its pseudolatex (Surelease) in preparation of matrix pellets of theophylline using extrusion-spheronization

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective(s):

          This study evaluates the effect of substitution of microcrystalline cellulose (MCC) with ethylcellulose (EC) on mechanical and release characteristics of theophylline pellets.

          Materials and Methods:

          The effect of addition of EC was investigated on characteristics of pellets with varying drug content prepared by extrusion-spheronization. Also the effect of type of granulating liquid (water or Surelease) was investigated on characteristics of selected pellets. The pellets were characterized for particle size (sieve analysis), mechanical strength, morphology (microscopy), thermal (DSC) and dissolution behaviors.

          Results:

          The exrtudability of the wet mass was reduced upon inclusion of EC so that complete replacement of MCC was not possible. Increase in EC percentage led to lower production yield and formation of pellets with larger diameter and slightly rough surfaces. Inclusion of EC also affected the mechanical properties of pellets but had negligible effect on drug release profile. The surface of selected pellets became smoother and their production yield increased upon the use of Surelease as granulating liquid. In addition the rate of drug release decreased to some extent when Surelease was used.

          Conclusion:

          Preparation of theophylline pellets with EC alone was not possible in process of extrusion-spheronization. Partial replacement of MCC with EC changed physicomechanical properties of pellets but hardly affected drug release. Although the use of Surelease as granulation liquid slightly decreased the rate of drug release, desirable matrix pellets with sustained drug release could not be produced. Despite this outcome however, these pellets could benefit from reduced coating thickness for drug release control.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion.

          The objective of this research project was to determine the physicochemical properties and investigate the drug release mechanism from ethyl cellulose (EC) matrix tablets prepared by either direct compression or hot-melt extrusion (HME) of binary mixtures of water soluble drug (guaifenesin) and the polymer. Ethyl cellulose was separated into "fine" or "coarse" particle size fractions corresponding to 325-80 and 80-30 mesh particles, respectively. Tablets containing 30% guaifenesin were prepared at 10, 30, or 50 kN compaction forces and extruded at processing temperatures of 80-90 and 90-110 degrees C. The drug dissolution and release kinetics were determined and the tablet pore characteristics, tortuosity, thermal properties and surface morphologies were studied using helium pycnometry, mercury porosimetry, differential scanning calorimetry and scanning electron microscopy. The tortuosity was measured directly by a novel technique that allows for the calculation of diffusion coefficients in three experiments. The Higuchi diffusion model, Percolation Theory and Polymer Free Volume Theory were applied to the dissolution data to explain the release properties of drug from the matrix systems. The release rate was shown to be dependent on the ethyl cellulose particle size, compaction force and extrusion temperature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Production of pellets via extrusion-spheronisation without the incorporation of microcrystalline cellulose: a critical review.

            Microcrystalline cellulose (MCC) is the golden standard to manufacture spherical particles (pellets) via extrusion-spheronisation since wetted microcrystalline cellulose has the proper rheological properties, cohesiveness and plasticity to yield strong and spherical particles. However, microcrystalline cellulose is not universally applicable due to a number of limitations: prolonged drug release of poorly soluble drugs, chemical incompatibility with specific drugs, drug adsorption onto MCC fibers. Hence, several products have been evaluated to explore their application as extrusion-spheronisation aid, aiming to avoid the disadvantages of MCC and to provide a broad application platform for extrusion-spheronisation: powdered cellulose, starch, chitosan, kappa-carrageenan, pectinic acid, hydroxypropylmethyl cellulose, hydroxyethyl cellulose, polyethylene oxide, cross-linked polyvinylpyrrolidone, glycerol monostearate. To determine the true potential of the proposed alternatives for MCC this review critically discusses the properties of the different materials and the quality of the resulting pellets in relation to the properties required for an ideal extrusion-spheronisation aid.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Influence of formulation and process parameters on the release characteristics of ethylcellulose sustained-release mini-matrices produced by hot-melt extrusion.

              Mini-matrices (multiple unit dosage form) with release-sustaining properties were developed by hot-melt extrusion (cylindrical die: 3mm) using metoprolol tartrate as model drug and ethylcellulose as sustained-release agent. Dibutyl sebacate was selected as plasticizer and its concentration was optimized to 50% (w/w) of the ethylcellulose concentration. Xanthan gum, a hydrophilic polymer, was added to the formulation to increase drug release. Changing the xanthan gum concentration modified the in vitro drug release: increasing xanthan gum concentrations (1%, 2.5%, 5%, 10% and 20%, w/w) yielded a faster drug release. Zero-order drug release was obtained at 5% (w/w) xanthan gum. Using kneading paddles, smooth extrudates were obtained when processed at 60 degrees C. At least one mixing zone was required to obtain smooth and homogeneous extrudates. The mixing efficacy and drug release were not affected by the number of mixing zones or their position along the extruder barrel. Raman analysis revealed that metoprolol tartrate was homogeneously distributed in the mini-matrices, independent of screw design and processing conditions. Simultaneously changing the powder feed rate (6-25-50 g/min) and screw speed (30-100-200 rpm) did not alter extrudate quality or dissolution properties.
                Bookmark

                Author and article information

                Journal
                Iran J Basic Med Sci
                Iran J Basic Med Sci
                Iranian Journal of Basic Medical Sciences
                Mashhad University of Medical Sciences (Iran )
                2008-3866
                2008-3874
                January 2017
                : 20
                : 1
                : 9-16
                Affiliations
                [1 ]Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
                [2 ]Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
                [3 ]Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
                Author notes
                [* ] Corresponding author: Fatemeh Sadeghi. Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences. Tel: +98-51-38823255; Fax: +98-51-3823251; email: sadeghif@ 123456mums.ac.ir
                Article
                IJBMS-20-9
                10.22038/ijbms.2017.8086
                5243980
                deb6cb91-7c37-48bf-8bd8-1e0ce5bfbf05
                Copyright: © Iranian Journal of Basic Medical Sciences

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 07 May 2016
                : 30 June 2016
                Categories
                Original Article

                drug release,ethylcellulose,extrusion-spheronization pellet,surelease,theophylline

                Comments

                Comment on this article