5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Determinant representations of spin-operator matrix elements in the XX spin chain and their applications

      Physical Review B
      American Physical Society (APS)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          The spectral signatures of Frenkel polarons in H- and J-aggregates.

          Electronic excitations in small aggregates, thin films, and crystals of conjugated organic molecules play a fundamental role in the operation of a wide array of organic-based devices including solar cells, transistors, and light-emitting diodes. Such excitations, or excitons, are generally spread out over several molecules: a balance between the delocalizing influence of resonant intermolecular coupling and the localizing influence of static and dynamic disorder determines the coherence range of the exciton. Because of the "soft" nature of organic materials, significant nuclear relaxation in the participating molecules also accompanies the electronic excitations. To properly understand energy or charge transport, one must treat intermolecular (excitonic) coupling, electron-vibrational coupling, and disorder on equal footing. In this Account, we review the key elements of a theoretical approach based on a multiparticle representation that describes electronic excitations in organic materials as vibronic excitations surrounded by a field of vibrational excitations. Such composite excitations are appropriately called Frenkel excitonic polarons. For many conjugated molecules, the bulk of the nuclear reorganization energy following electronic excitation arises from the elongation of a symmetric vinyl stretching mode with energy approximately 1400 cm(-1). To appreciate the impact of aggregation, we study how the vibronic progression of this mode, which dominates the isolated (solvated) molecule absorption and emission spectra, is distorted when molecules are close enough to interact with each other. As we demonstrate in this Account, the nature of the distortion provides a wealth of information about how the molecules are packed, the strength of the excitonic interactions between molecules, the number of molecules that are coherently coupled, and the nature of the disorder. We show that the aggregation-induced deviations from the Poissonian distribution of vibronic peak intensities take on two extremes identified with ideal H- and J-aggregates. The sign of the nearest neighbor electronic coupling, positive for H and negative for J, distinguishes the two basic aggregate forms. For several decades, researchers have known that H-aggregates exhibit blue-shifted absorption spectra and are subradiant while J-aggregates exhibit the opposite behavior (red-shifted absorption and superradiance). However, the exact inclusion of exciton-vibrational coupling reveals several more distinguishing traits between the two aggregate types: in H(J)-aggregates the ratio of the first two vibronic peak intensities in the absorption spectrum decreases (increases) with increasing excitonic coupling, while the ratio of the 0-0 to 0-1 emission intensities increases (decreases) with disorder and increases (decreases) with increasing temperature. These two extreme behaviors provide the framework for understanding absorption and emission in more complex morphologies, such as herringbone packing in oligo(phenylene vinylene)s, oligothiophenes and polyacene crystals, as well as the polymorphic packing arrangements observed in carotenoids.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dynamics of light harvesting in photosynthesis.

            We review recent theoretical and experimental advances in the elucidation of the dynamics of light harvesting in photosynthesis, focusing on recent theoretical developments in structure-based modeling of electronic excitations in photosynthetic complexes and critically examining theoretical models for excitation energy transfer. We then briefly describe two-dimensional electronic spectroscopy and its application to the study of photosynthetic complexes, in particular the Fenna-Matthews-Olson complex from green sulfur bacteria. This review emphasizes recent experimental observations of long-lasting quantum coherence in photosynthetic systems and the implications of quantum coherence in natural photosynthesis.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Two-Dimensional Ising Model as a Soluble Problem of Many Fermions

                Bookmark

                Author and article information

                Journal
                PRBMDO
                Physical Review B
                Phys. Rev. B
                American Physical Society (APS)
                2469-9950
                2469-9969
                January 2018
                January 3 2018
                : 97
                : 1
                Article
                10.1103/PhysRevB.97.014301
                dec80f10-464a-43ef-a4be-0d3518c855a9
                © 2018

                https://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article