2
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Submit your digital health research with an established publisher
      - celebrating 25 years of open access

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Predictive Analytics for Care and Management of Patients With Acute Diseases: Deep Learning–Based Method to Predict Crucial Complication Phenotypes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Acute diseases present severe complications that develop rapidly, exhibit distinct phenotypes, and have profound effects on patient outcomes. Predictive analytics can enhance physicians’ care and management of patients with acute diseases by predicting crucial complication phenotypes for a timely diagnosis and treatment. However, effective phenotype predictions require several challenges to be overcome. First, patient data collected in the early stages of an acute disease (eg, clinical data and laboratory results) are less informative for predicting phenotypic outcomes. Second, patient data are temporal and heterogeneous; for example, patients receive laboratory tests at different time intervals and frequencies. Third, imbalanced distributions of patient outcomes create additional complexity for predicting complication phenotypes.

          Objective

          To predict crucial complication phenotypes among patients with acute diseases, we propose a novel, deep learning–based method that uses recurrent neural network–based sequence embedding to represent disease progression while considering temporal heterogeneities in patient data. Our method incorporates a latent regulator to alleviate data insufficiency constraints by accounting for the underlying mechanisms that are not observed in patient data. The proposed method also includes cost-sensitive learning to address imbalanced outcome distributions in patient data for improved predictions.

          Methods

          From a major health care organization in Taiwan, we obtained a sample of 10,354 electronic health records that pertained to 6545 patients with peritonitis. The proposed method projects these temporal, heterogeneous, and clinical data into a substantially reduced feature space and then incorporates a latent regulator (latent parameter matrix) to obviate data insufficiencies and account for variations in phenotypic expressions. Moreover, our method employs cost-sensitive learning to further increase the predictive performance.

          Results

          We evaluated the efficacy of the proposed method for predicting two hepatic complication phenotypes in patients with peritonitis: acute hepatic encephalopathy and hepatorenal syndrome. The following three benchmark techniques were evaluated: temporal multiple measurement case-based reasoning (MMCBR), temporal short long-term memory (T-SLTM) networks, and time fusion convolutional neural network (CNN). For acute hepatic encephalopathy predictions, our method attained an area under the curve (AUC) value of 0.82, which outperforms temporal MMCBR by 64%, T-SLTM by 26%, and time fusion CNN by 26%. For hepatorenal syndrome predictions, our method achieved an AUC value of 0.64, which is 29% better than that of temporal MMCBR (0.54). Overall, the evaluation results show that the proposed method significantly outperforms all the benchmarks, as measured by recall, F-measure, and AUC while maintaining comparable precision values.

          Conclusions

          The proposed method learns a short-term temporal representation from patient data to predict complication phenotypes and offers greater predictive utilities than prevalent data-driven techniques. This method is generalizable and can be applied to different acute disease (illness) scenarios that are characterized by insufficient patient clinical data availability, temporal heterogeneities, and imbalanced distributions of important patient outcomes.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          Deep learning.

          Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            mice: Multivariate Imputation by Chained Equations inR

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data.

              Implementation of the International Statistical Classification of Disease and Related Health Problems, 10th Revision (ICD-10) coding system presents challenges for using administrative data. Recognizing this, we conducted a multistep process to develop ICD-10 coding algorithms to define Charlson and Elixhauser comorbidities in administrative data and assess the performance of the resulting algorithms. ICD-10 coding algorithms were developed by "translation" of the ICD-9-CM codes constituting Deyo's (for Charlson comorbidities) and Elixhauser's coding algorithms and by physicians' assessment of the face-validity of selected ICD-10 codes. The process of carefully developing ICD-10 algorithms also produced modified and enhanced ICD-9-CM coding algorithms for the Charlson and Elixhauser comorbidities. We then used data on in-patients aged 18 years and older in ICD-9-CM and ICD-10 administrative hospital discharge data from a Canadian health region to assess the comorbidity frequencies and mortality prediction achieved by the original ICD-9-CM algorithms, the enhanced ICD-9-CM algorithms, and the new ICD-10 coding algorithms. Among 56,585 patients in the ICD-9-CM data and 58,805 patients in the ICD-10 data, frequencies of the 17 Charlson comorbidities and the 30 Elixhauser comorbidities remained generally similar across algorithms. The new ICD-10 and enhanced ICD-9-CM coding algorithms either matched or outperformed the original Deyo and Elixhauser ICD-9-CM coding algorithms in predicting in-hospital mortality. The C-statistic was 0.842 for Deyo's ICD-9-CM coding algorithm, 0.860 for the ICD-10 coding algorithm, and 0.859 for the enhanced ICD-9-CM coding algorithm, 0.868 for the original Elixhauser ICD-9-CM coding algorithm, 0.870 for the ICD-10 coding algorithm and 0.878 for the enhanced ICD-9-CM coding algorithm. These newly developed ICD-10 and ICD-9-CM comorbidity coding algorithms produce similar estimates of comorbidity prevalence in administrative data, and may outperform existing ICD-9-CM coding algorithms.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Med Internet Res
                J Med Internet Res
                JMIR
                Journal of Medical Internet Research
                JMIR Publications (Toronto, Canada )
                1439-4456
                1438-8871
                February 2021
                12 February 2021
                : 23
                : 2
                : e18372
                Affiliations
                [1 ] Department of Operations and Information Systems David Eccles School of Business University of Utah Salt Lake City, UT United States
                [2 ] Department of Information Systems WP Carey School of Business Arizona State University Phoenix, AZ United States
                [3 ] Department of General Surgery and Community Medicine Research Center Keelung Chang Gung Memorial Hospital Keelung Taiwan
                [4 ] Department of Chinese Medicine College of Medicine Chang Gung University, Taoyuan Chang Gung Taiwan
                Author notes
                Corresponding Author: Ting-Shuo Huang huangts1234@ 123456gmail.com
                Author information
                https://orcid.org/0000-0003-4418-1109
                https://orcid.org/0000-0002-4981-895X
                https://orcid.org/0000-0001-8277-4701
                https://orcid.org/0000-0002-2932-6878
                https://orcid.org/0000-0002-9751-2250
                Article
                v23i2e18372
                10.2196/18372
                7910123
                33576744
                ded3fb48-866d-4490-9ee6-9ab12a63e5e8
                ©Jessica Qiuhua Sheng, Paul Jen-Hwa Hu, Xiao Liu, Ting-Shuo Huang, Yu Hsien Chen. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 12.02.2021.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included.

                History
                : 22 February 2020
                : 29 June 2020
                : 13 September 2020
                : 21 December 2020
                Categories
                Original Paper
                Original Paper

                Medicine
                data analytics,neural networks,phenotype,deep learning,electronic health records
                Medicine
                data analytics, neural networks, phenotype, deep learning, electronic health records

                Comments

                Comment on this article