33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access
      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Differentiated thyroid carcinoma (DTC) is the most common type of thyroid cancer. Treatment with surgery, radioactive iodine (RAI), and TSH suppression is effective in most patients. Five to 15% of patients become RAI refractory and need alternative therapy; however, treatment options are limited. 68Ga-PSMA PET/CT, originally developed for prostate cancer, is also applicable to other malignancies, including thyroid carcinoma. The uptake of PSMA in thyroid carcinoma gives opportunities for imaging and therapy of RAI-refractory DTC. The aim of this study was to analyze imaging on 68Ga-PSMA PET/CT and evaluate the response to 177Lu-PSMA-617 therapy in patients with RAI-refractory DTC.

          Materials and methods

          Five patients with RAI-refractory DTC underwent 68Ga-PSMA PET/CT to determine their eligibility for 177Lu-PSMA-617 therapy. 68Ga-PSMA PET/CTs were analyzed visually and quantitatively. Response to 177Lu-PSMA-617 therapy was evaluated using imaging and thyroglobulin (Tg) values.

          Results

          Tracer uptake suspicious for distant metastases was depicted in all 68Ga-PSMA PET/CTs. Based on tracer uptake, three patients were eligible for 177Lu-PSMA-617 therapy, of whom two were treated. One patient showed disease progression on imaging 1 month later, while her Tg values gradually increased from 18 to 63 μg/L in the months after treatment. Another patient showed partial, temporary response of lung and liver metastases. Her Tg levels initially decreased from 17 to 9 μg/L. However, 7 months after treatment, there was disease progression on imaging and Tg levels had increased to 14 μg/L.

          Imaging with 68Ga-PSMA PET/CT could be compared to 18FDG PET/CT in three patients. Two patients showed additional lesions on 68Ga-PSMA PET/CT, and one patient showed concordant imaging.

          Conclusion

          68Ga-PSMA PET/CT appears to have added value in patients with RAI-refractory DTC, as it is able to detect various types of lesions, some of which were not picked up by 18FDG PET/CT. Furthermore, 68Ga-PSMA PET/CT might be used to identify patients eligible for treatment with 177Lu-PSMA-617. One of the two patients who underwent 177Lu-PSMA-617 therapy showed a modest, temporary response. To draw conclusions about the effectiveness of this therapy, more research is needed.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Current use of PSMA-PET in prostate cancer management.

          Currently, the findings of imaging procedures used for detection or staging of prostate cancer depend on morphology of lymph nodes or bone metabolism and do not always meet diagnostic needs. Prostate-specific membrane antigen (PSMA), a transmembrane protein that has considerable overexpression on most prostate cancer cells, has gained increasing interest as a target molecule for imaging. To date, several small compounds for labelling PSMA have been developed and are currently being investigated as imaging probes for PET with the (68)Ga-labelled PSMA inhibitor Glu-NH-CO-NH-Lys(Ahx)-HBED-CC being the most widely studied agent. (68)Ga-PSMA-PET imaging in combination with multiparametric MRI (mpMRI) might provide additional molecular information on cancer localization within the prostate. In patients with primary prostate cancer of intermediate-risk to high-risk, PSMA-based imaging has been reported to improve detection of metastatic disease compared with CT or mpMRI, rendering additional cross-sectional imaging or bone scintigraphy unnecessary. Furthermore, in patients with biochemically recurrent prostate cancer, use of (68)Ga-PSMA-PET imaging has been shown to increase detection of metastatic sites, even at low serum PSA values, compared with conventional imaging or PET examination with different tracers. Thus, although current knowledge is still limited and derived mostly from retrospective series, PSMA-based imaging holds great promise to improve prostate cancer management.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Novel Preclinical and Radiopharmaceutical Aspects of [68Ga]Ga-PSMA-HBED-CC: A New PET Tracer for Imaging of Prostate Cancer

            The detection of prostate cancer lesions by PET imaging of the prostate-specific membrane antigen (PSMA) has gained highest clinical impact during the last years. 68Ga-labelled Glu-urea-Lys(Ahx)-HBED-CC ([68Ga]Ga-PSMA-HBED-CC) represents a successful novel PSMA inhibitor radiotracer which has recently demonstrated its suitability in individual first-in-man studies. The radiometal chelator HBED-CC used in this molecule represents a rather rarely used acyclic complexing agent with chemical characteristics favourably influencing the biological functionality of the PSMA inhibitor. The simple replacement of HBED-CC by the prominent radiometal chelator DOTA was shown to dramatically reduce the in vivo imaging quality of the respective 68Ga-labelled PSMA-targeted tracer proving that HBED-CC contributes intrinsically to the PSMA binding of the Glu-urea-Lys(Ahx) pharmacophore. Owing to the obvious growing clinical impact, this work aims to reflect the properties of HBED-CC as acyclic radiometal chelator and presents novel preclinical data and relevant aspects of the radiopharmaceutical production process of [68Ga]Ga-PSMA-HBED-CC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Expression of Prostate-Specific Membrane Antigen in Lung Cancer Cells and Tumor Neovasculature Endothelial Cells and Its Clinical Significance

              Background Prostate-specific membrane antigen (PSMA) has been found in tumor neovasculature endothelial cells (NECs) of non-prostate cancers and may become the most promising target for anti-tumor therapy. To study the value of PSMA as a potential new target for lung cancer treatment, PSMA expression in non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) tissues and its relationship with clinicopathology were investigated in the current study. Methods Immunohistochemistry was used to detect PSMA expression in a total of 150 lung specimens of patients with lung cancer. The data were analyzed using univariate and multivariate statistical analyses. Results The percentages of NSCLC patients who had PSMA (+) tumor cells and PSMA (+) NECs were 54.02% and 85.06%, respectively. The percentage of patients younger than 60 years old who had PSMA (+) tumor cells was 69.05%, which was significantly greater than the percentage of patients aged 60 years or older (40.00%, p<0.05). A significant difference was observed in the percentage of NSCLC patients with PMSA (+) NECs and stage I or II cancer (92.98%) and those patients with stage III or IV cancer (76.77%). In the SCLC tissues, NEC PSMA expression (70.00%) did not differ significantly from NSCLC. SCLC tumor cells and normal lung tissues cells were all negative. There was no significant correlation between the presence of PSMA (+) NECs in SCLC patients and the observed clinicopathological parameters. Conclusions PSMA is expressed not only in NECs of NSCLC and SCLC but also in tumor cells of most NSCLC patients. The presence of PSMA (+) tumor cells and PSMA (+) NECs in NSCLC was negatively correlated with age and the clinicopathological stage of the patients, respectively.
                Bookmark

                Author and article information

                Contributors
                B.deKeizer@UMCUtrecht.nl
                Journal
                EJNMMI Res
                EJNMMI Res
                EJNMMI Research
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                2191-219X
                6 March 2020
                6 March 2020
                2020
                : 10
                : 18
                Affiliations
                [1 ]GRID grid.7692.a, ISNI 0000000090126352, Department of Surgery, , University Medical Centre Utrecht, ; Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
                [2 ]GRID grid.7692.a, ISNI 0000000090126352, Department of Radiology and Nuclear Medicine, , University Medical Centre Utrecht, ; Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
                [3 ]GRID grid.7692.a, ISNI 0000000090126352, Department of Endocrine Oncology, , University Medical Centre Utrecht, ; Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
                Author information
                http://orcid.org/0000-0002-6270-9483
                Article
                610
                10.1186/s13550-020-0610-x
                7060303
                32144510
                df7cb452-1780-482b-a50d-75bc1d1ba714
                © The Author(s). 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 19 December 2019
                : 18 February 2020
                Categories
                Preliminary Research
                Custom metadata
                © The Author(s) 2020

                Radiology & Imaging
                radioactive iodine-refractory differentiated thyroid carcinoma,prostate-specific membrane antigen,theranostic,gallium,lutetium,pet/ct

                Comments

                Comment on this article