56
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Choices in fluid type and volume during resuscitation: impact on patient outcomes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We summarize the emerging new literature regarding the pathophysiological principles underlying the beneficial and deleterious effects of fluid administration during resuscitation, as well as current recommendations and recent clinical evidence regarding specific colloids and crystalloids. This systematic review allows us to conclude that there is no clear benefit associated with the use of colloids compared to crystalloids and no evidence to support the unique benefit of albumin as a resuscitation fluid. Hydroxyethyl starch use has been associated with increased acute kidney injury (AKI) and use of renal replacement therapy. Other synthetic colloids (dextran and gelatins) though not well studied do not appear superior to crystalloids. Normal saline (NS) use is associated with hyperchloremic metabolic acidosis and increased risk of AKI. This risk is decreased when balanced salt solutions are used. Balanced crystalloid solutions have shown no harmful effects, and there is evidence for benefit over NS. Finally, fluid resuscitation should be applied in a goal-directed manner and targeted to physiologic needs of individual patients. The evidence supports use of fluids in volume-responsive patients whose end-organ perfusion parameters have not been met.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults.

          Administration of traditional chloride-liberal intravenous fluids may precipitate acute kidney injury (AKI). To assess the association of a chloride-restrictive (vs chloride-liberal) intravenous fluid strategy with AKI in critically ill patients. Prospective, open-label, sequential period pilot study of 760 patients admitted consecutively to the intensive care unit (ICU) during the control period (February 18 to August 17, 2008) compared with 773 patients admitted consecutively during the intervention period (February 18 to August 17, 2009) at a university-affiliated hospital in Melbourne, Australia. During the control period, patients received standard intravenous fluids. After a 6-month phase-out period (August 18, 2008, to February 17, 2009), any use of chloride-rich intravenous fluids (0.9% saline, 4% succinylated gelatin solution, or 4% albumin solution) was restricted to attending specialist approval only during the intervention period; patients instead received a lactated solution (Hartmann solution), a balanced solution (Plasma-Lyte 148), and chloride-poor 20% albumin. The primary outcomes included increase from baseline to peak creatinine level in the ICU and incidence of AKI according to the risk, injury, failure, loss, end-stage (RIFLE) classification. Secondary post hoc analysis outcomes included the need for renal replacement therapy (RRT), length of stay in ICU and hospital, and survival. RESULTS Chloride administration decreased by 144 504 mmol (from 694 to 496 mmol/patient) from the control period to the intervention period. Comparing the control period with the intervention period, the mean serum creatinine level increase while in the ICU was 22.6 μmol/L (95% CI, 17.5-27.7 μmol/L) vs 14.8 μmol/L (95% CI, 9.8-19.9 μmol/L) (P = .03), the incidence of injury and failure class of RIFLE-defined AKI was 14% (95% CI, 11%-16%; n = 105) vs 8.4% (95% CI, 6.4%-10%; n = 65) (P <.001), and the use of RRT was 10% (95% CI, 8.1%-12%; n = 78) vs 6.3% (95% CI, 4.6%-8.1%; n = 49) (P = .005). After adjustment for covariates, this association remained for incidence of injury and failure class of RIFLE-defined AKI (odds ratio, 0.52 [95% CI, 0.37-0.75]; P <.001) and use of RRT (odds ratio, 0.52 [95% CI, 0.33-0.81]; P = .004). There were no differences in hospital mortality, hospital or ICU length of stay, or need for RRT after hospital discharge. CONCLUSION The implementation of a chloride-restrictive strategy in a tertiary ICU was associated with a significant decrease in the incidence of AKI and use of RRT. Clinicaltrials.gov Identifier: NCT00885404.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature.

            : A systematic review of the literature to determine the ability of dynamic changes in arterial waveform-derived variables to predict fluid responsiveness and compare these with static indices of fluid responsiveness. The assessment of a patient's intravascular volume is one of the most difficult tasks in critical care medicine. Conventional static hemodynamic variables have proven unreliable as predictors of volume responsiveness. Dynamic changes in systolic pressure, pulse pressure, and stroke volume in patients undergoing mechanical ventilation have emerged as useful techniques to assess volume responsiveness. : MEDLINE, EMBASE, Cochrane Register of Controlled Trials and citation review of relevant primary and review articles. : Clinical studies that evaluated the association between stroke volume variation, pulse pressure variation, and/or stroke volume variation and the change in stroke volume/cardiac index after a fluid or positive end-expiratory pressure challenge. : Data were abstracted on study design, study size, study setting, patient population, and the correlation coefficient and/or receiver operating characteristic between the baseline systolic pressure variation, stroke volume variation, and/or pulse pressure variation and the change in stroke index/cardiac index after a fluid challenge. When reported, the receiver operating characteristic of the central venous pressure, global end-diastolic volume index, and left ventricular end-diastolic area index were also recorded. Meta-analytic techniques were used to summarize the data. Twenty-nine studies (which enrolled 685 patients) met our inclusion criteria. Overall, 56% of patients responded to a fluid challenge. The pooled correlation coefficients between the baseline pulse pressure variation, stroke volume variation, systolic pressure variation, and the change in stroke/cardiac index were 0.78, 0.72, and 0.72, respectively. The area under the receiver operating characteristic curves were 0.94, 0.84, and 0.86, respectively, compared with 0.55 for the central venous pressure, 0.56 for the global end-diastolic volume index, and 0.64 for the left ventricular end-diastolic area index. The mean threshold values were 12.5 +/- 1.6% for the pulse pressure variation and 11.6 +/- 1.9% for the stroke volume variation. The sensitivity, specificity, and diagnostic odds ratio were 0.89, 0.88, and 59.86 for the pulse pressure variation and 0.82, 0.86, and 27.34 for the stroke volume variation, respectively. : Dynamic changes of arterial waveform-derived variables during mechanical ventilation are highly accurate in predicting volume responsiveness in critically ill patients with an accuracy greater than that of traditional static indices of volume responsiveness. This technique, however, is limited to patients who receive controlled ventilation and who are not breathing spontaneously.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Hemodynamic parameters to guide fluid therapy

              The clinical determination of the intravascular volume can be extremely difficult in critically ill and injured patients as well as those undergoing major surgery. This is problematic because fluid loading is considered the first step in the resuscitation of hemodynamically unstable patients. Yet, multiple studies have demonstrated that only approximately 50% of hemodynamically unstable patients in the intensive care unit and operating room respond to a fluid challenge. Whereas under-resuscitation results in inadequate organ perfusion, accumulating data suggest that over-resuscitation increases the morbidity and mortality of critically ill patients. Cardiac filling pressures, including the central venous pressure and pulmonary artery occlusion pressure, have been traditionally used to guide fluid management. However, studies performed during the past 30 years have demonstrated that cardiac filling pressures are unable to predict fluid responsiveness. During the past decade, a number of dynamic tests of volume responsiveness have been reported. These tests dynamically monitor the change in stroke volume after a maneuver that increases or decreases venous return (preload) and challenges the patients' Frank-Starling curve. These dynamic tests use the change in stroke volume during mechanical ventilation or after a passive leg raising maneuver to assess fluid responsiveness. The stroke volume is measured continuously and in real-time by minimally invasive or noninvasive technologies, including Doppler methods, pulse contour analysis, and bioreactance.
                Bookmark

                Author and article information

                Contributors
                Journal
                Ann Intensive Care
                Ann Intensive Care
                Annals of Intensive Care
                Springer
                2110-5820
                2014
                4 December 2014
                : 4
                : 38
                Affiliations
                [1 ]Department of Critical Care Medicine, University of Pittsburgh, 606 Scaife Hall, 3550 Terrace Street, Pittsburgh 15261, PA, USA
                Article
                s13613-014-0038-4
                10.1186/s13613-014-0038-4
                4298675
                25625012
                df990fbd-846b-4d63-b008-e8a455036a64
                Copyright © 2014 Lira and Pinsky; licensee Springer.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

                History
                : 1 August 2014
                : 14 November 2014
                Categories
                Review

                Emergency medicine & Trauma
                colloids,crystalloids,osmolality,glycocalyx,intravascular volume replacement,systematic review

                Comments

                Comment on this article