20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular insights into reproduction regulation of female Oriental River prawns Macrobrachium nipponense through comparative transcriptomic analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The oriental river prawn, Macrobrachium nipponense, is an important commercial aquaculture resource in China. During breeding season, short ovary maturation cycles of female prawns cause multi-generation reunions in ponds and affect the growth of females representing individual miniaturization (known as autumn -propagation). These reproductive characteristics pose problems for in large - scale farming. To date, the molecular mechanisms of reproduction regulation of M. nipponense remain unclear. To address this issue, we performed transcriptome sequencing and gene expression analyses of eyestalk and cerebral ganglia of female M. nipponense during breeding and non-breeding seasons. Differentially expressed gene enrichment analysis results revealed several important reproduction related terms and signaling pathways, such as “photoreceptor activity”, “structural constituent of cuticle” and “G-protein coupled receptor activity”. The following six key genes from the transcriptome were predicted to mediate environmental factors regulating reproduction of M. nipponense: neuroparsin, neuropeptide F II, orcokinin II, crustacean cardioactive peptide, pigment-dispersing hormone 3 and tachykinin. These results will contribute to a better understanding of the molecular mechanisms of reproduction of oriental river prawns. Further detailed functional analyses of the candidate reproduction regulation related neuropeptides are needed to shed light on the mechanisms of reproduction of crustacean.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Ancestral TSH mechanism signals summer in a photoperiodic mammal.

          In mammals, day-length-sensitive (photoperiodic) seasonal breeding cycles depend on the pineal hormone melatonin, which modulates secretion of reproductive hormones by the anterior pituitary gland [1]. It is thought that melatonin acts in the hypothalamus to control reproduction through the release of neurosecretory signals into the pituitary portal blood supply, where they act on pituitary endocrine cells [2]. Contrastingly, we show here that during the reproductive response of Soay sheep exposed to summer day lengths, the reverse applies: Melatonin acts directly on anterior-pituitary cells, and these then relay the photoperiodic message back into the hypothalamus to control neuroendocrine output. The switch to long days causes melatonin-responsive cells in the pars tuberalis (PT) of the anterior pituitary to increase production of thyrotrophin (TSH). This acts locally on TSH-receptor-expressing cells in the adjacent mediobasal hypothalamus, leading to increased expression of type II thyroid hormone deiodinase (DIO2). DIO2 initiates the summer response by increasing hypothalamic tri-iodothyronine (T3) levels. These data and recent findings in quail [3] indicate that the TSH-expressing cells of the PT play an ancestral role in seasonal reproductive control in vertebrates. In mammals this provides the missing link between the pineal melatonin signal and thyroid-dependent seasonal biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reproductive regulators in decapod crustaceans: an overview.

            Control of reproductive development in crustaceans requires neuropeptides, ecdysone and methyl farnesoate (MF). A major source of neuropeptides is the X-organ-sinus gland (XO-SG) complex located in the eyestalk ganglia of crustaceans. The other regulatory factors (either peptides or neuromodulators) are produced in the brain and thoracic ganglia (TG). Two other regulatory non-peptide compounds, the steroid ecdysone and the sesquiterpene MF, are produced by the Y-organs and the mandibular organs, respectively. In the current review, I have tried to recapitulate recent studies on the role of gonadal regulatory factors in regulating crustacean reproduction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              De novo assembly and characterization of transcriptome using Illumina paired-end sequencing and identification of CesA gene in ramie (Boehmeria nivea L. Gaud)

              Background Ramie fiber, extracted from vegetative organ stem bast, is one of the most important natural fibers. Understanding the molecular mechanisms of the vegetative growth of the ramie and the formation and development of bast fiber is essential for improving the yield and quality of the ramie fiber. However, only 418 expressed tag sequences (ESTs) of ramie deposited in public databases are far from sufficient to understand the molecular mechanisms. Thus, high-throughput transcriptome sequencing is essential to generate enormous ramie transcript sequences for the purpose of gene discovery, especially genes such as the cellulose synthase (CesA) gene. Results Using Illumina paired-end sequencing, about 53 million sequencing reads were generated. De novo assembly yielded 43,990 unigenes with an average length of 824 bp. By sequence similarity searching for known proteins, a total of 34,192 (77.7%) genes were annotated for their function. Out of these annotated unigenes, 16,050 and 13,042 unigenes were assigned to gene ontology and clusters of orthologous group, respectively. Searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) indicated that 19,846 unigenes were mapped to 126 KEGG pathways, and 565 genes were assigned to http://starch and sucrose metabolic pathway which was related with cellulose biosynthesis. Additionally, 51 CesA genes involved in cellulose biosynthesis were identified. Analysis of tissue-specific expression pattern of the 51 CesA genes revealed that there were 36 genes with a relatively high expression levels in the stem bark, which suggests that they are most likely responsible for the biosynthesis of bast fiber. Conclusion To the best of our knowledge, this study is the first to characterize the ramie transcriptome and the substantial amount of transcripts obtained will accelerate the understanding of the ramie vegetative growth and development mechanism. Moreover, discovery of the 36 CesA genes with relatively high expression levels in the stem bark will present an opportunity to understand the ramie bast fiber formation and development mechanisms.
                Bookmark

                Author and article information

                Contributors
                fuht@ffrc.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                22 September 2017
                22 September 2017
                2017
                : 7
                : 12161
                Affiliations
                [1 ]ISNI 0000 0000 9413 3760, GRID grid.43308.3c, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, ; Wuxi, 214081 China
                [2 ]Wuxi Fishery College Nanjing Agricultural University, Wuxi, 214081 China
                [3 ]ISNI 0000 0000 9833 2433, GRID grid.412514.7, College of Fisheries and Life Sciences, Shanghai Ocean University, ; Shanghai, 201306 China
                Article
                10439
                10.1038/s41598-017-10439-2
                5610250
                28939826
                dfb7c9d9-8c88-4a64-8023-1c36a6a81d35
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 22 January 2017
                : 9 August 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article