21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Astragaloside IV Protects against Isoproterenol-Induced Cardiac Hypertrophy by Regulating NF-κB/PGC-1α Signaling Mediated Energy Biosynthesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We previously reported that Astragaloside IV (ASIV), a major active constituent of Astragalus membranaceus (Fisch) Bge protects against cardiac hypertrophy in rats induced by isoproterenol (Iso), however the mechanism underlying the protection remains unknown. Dysfunction of cardiac energy biosynthesis contributes to the hypertrophy and Nuclear Factor κB (NF-κB)/Peroxisome Proliferator-Activated Receptor-γ Coactivator 1α (PGC-1α) signaling gets involved in the dysfunction. The present study was designed to investigate the mechanism by which ASIV improves the cardiac hypertrophy with focuses on the NF-κB/PGC-1α signaling mediated energy biosynthesis. Sprague-Dawley (SD) rats or Neonatal Rat Ventricular Myocytes (NRVMs) were treated with Iso alone or in combination with ASIV. The results showed that combination with ASIV significantly attenuated the pathological changes, reduced the ratios of heart weight/body weight and Left ventricular weight/body weight, improved the cardiac hemodynamics, down-regulated mRNA expression of Atrial Natriuretic Peptide (ANP) and Brain Natriuretic Peptide (BNP), increased the ratio of ATP/AMP, and decreased the content of Free Fat Acid (FFA) in heart tissue of rats compared with Iso alone. In addition, pretreatment with ASIV significantly decreased the surface area and protein content, down-regulated mRNA expression of ANP and BNP, increased the ratio of ATP/AMP, and decreased the content of FFA in NRVMs compared with Iso alone. Furthermore, ASIV increased the protein expression of ATP5D, subunit of ATP synthase and PGC-1α, inhibited translocation of p65, subunit of NF-κB into nuclear fraction in both rats and NRVMs compared with Iso alone. Parthenolide (Par), the specific inhibitor of p65, exerted similar effects as ASIV in NRVMs. Knockdown of p65 with siRNA decreased the surface areas and increased PGC-1α expression of NRVMs compared with Iso alone. The results suggested that ASIV protects against Iso-induced cardiac hypertrophy through regulating NF-κB/PGC-1α signaling mediated energy biosynthesis.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle.

          Skeletal and cardiac muscle depend on high turnover of ATP made by mitochondria in order to contract efficiently. The transcriptional coactivator PGC-1alpha has been shown to function as a major regulator of mitochondrial biogenesis and respiration in both skeletal and cardiac muscle, but this has been based only on gain-of-function studies. Using genetic knockout mice, we show here that, while PGC-1alpha KO mice appear to retain normal mitochondrial volume in both muscle beds, expression of genes of oxidative phosphorylation is markedly blunted. Hearts from these mice have reduced mitochondrial enzymatic activities and decreased levels of ATP. Importantly, isolated hearts lacking PGC-1alpha have a diminished ability to increase work output in response to chemical or electrical stimulation. As mice lacking PGC-1alpha age, cardiac dysfunction becomes evident in vivo. These data indicate that PGC-1alpha is vital for the heart to meet increased demands for ATP and work in response to physiological stimuli.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Estrogen-related receptor alpha directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle.

            Estrogen-related receptors (ERRs) are orphan nuclear receptors activated by the transcriptional coactivator peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator 1alpha (PGC-1alpha), a critical regulator of cellular energy metabolism. However, metabolic target genes downstream of ERRalpha have not been well defined. To identify ERRalpha-regulated pathways in tissues with high energy demand such as the heart, gene expression profiling was performed with primary neonatal cardiac myocytes overexpressing ERRalpha. ERRalpha upregulated a subset of PGC-1alpha target genes involved in multiple energy production pathways, including cellular fatty acid transport, mitochondrial and peroxisomal fatty acid oxidation, and mitochondrial respiration. These results were validated by independent analyses in cardiac myocytes, C2C12 myotubes, and cardiac and skeletal muscle of ERRalpha-/- mice. Consistent with the gene expression results, ERRalpha increased myocyte lipid accumulation and fatty acid oxidation rates. Many of the genes regulated by ERRalpha are known targets for the nuclear receptor PPARalpha, and therefore, the interaction between these regulatory pathways was explored. ERRalpha activated PPARalpha gene expression via direct binding of ERRalpha to the PPARalpha gene promoter. Furthermore, in fibroblasts null for PPARalpha and ERRalpha, the ability of ERRalpha to activate several PPARalpha targets and to increase cellular fatty acid oxidation rates was abolished. PGC-1alpha was also shown to activate ERRalpha gene expression. We conclude that ERRalpha serves as a critical nodal point in the regulatory circuitry downstream of PGC-1alpha to direct the transcription of genes involved in mitochondrial energy-producing pathways in cardiac and skeletal muscle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts.

              The contribution of glycolysis and oxidative metabolism to ATP production was determined in isolated working hypertrophied hearts perfused with Krebs-Henseleit buffer containing 3% albumin, 0.4 mM palmitate, 0.5 mM lactate, and 11 mM glucose. Glycolysis and glucose oxidation were directly measured by perfusing hearts with [5-3H/U-14C]glucose and by measuring 3H2O and 14CO2 production, respectively. Palmitate and lactate oxidation were determined by simultaneous measurement of 3H2O and 14CO2 in hearts perfused with [9,10-3H]palmitate and [U-14C]lactate. At low workloads (60 mmHg aortic after-load), rates of palmitate oxidation were 47% lower in hypertrophied hearts than in control hearts, but palmitate oxidation remained the primary energy source in both groups, accounting for 55 and 69% of total ATP production, respectively. The contribution of glycolysis to ATP production was significantly higher in hypertrophied hearts (19%) than in control hearts (7%), whereas that of glucose and lactate oxidation did not differ between groups. During conditions of high work (120 mmHg aortic afterload), the extra ATP production required for mechanical function was obtained primarily from an increase in the oxidation of glucose and lactate in both groups. The contribution of palmitate oxidation to overall ATP production decreased in hypertrophied and control hearts (to 40 and 55% of overall ATP production, respectively) and was no longer significantly depressed in hypertrophied hearts. Glycolysis, on the other hand, was accelerated in control hearts to rates seen in the hypertrophied hearts. Thus a reduced contribution of fatty acid oxidation to energy production in hypertrophied rat hearts is accompanied by a compensatory increase in glycolysis during low work conditions.(ABSTRACT TRUNCATED AT 250 WORDS)
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                4 March 2015
                2015
                : 10
                : 3
                : e0118759
                Affiliations
                [001]Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Drug Research Institute, Liaoning Medical University, Jinzhou, Liaoning, P.R. China
                Temple University, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: HXW FTT MLL SPZ ANL YHY. Performed the experiments: SPZ FTT ANL JZ JY. Analyzed the data: HXW FTT SPZ. Contributed reagents/materials/analysis tools: HXW. Wrote the paper: HXW SPZ FTT.

                Article
                PONE-D-14-27924
                10.1371/journal.pone.0118759
                4349820
                25738576
                dff3e15c-5d63-45cd-a022-c8a6e4c389c4
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 25 June 2014
                : 6 January 2015
                Page count
                Figures: 5, Tables: 1, Pages: 15
                Funding
                This work was supported by National Natural Science Foundation (No.81374008) of the People’s Republic of China.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article