42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lack of Decorin Expression by Human Bladder Cancer Cells Offers New Tools in the Therapy of Urothelial Malignancies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Decorin, a multifunctional small leucine-rich extracellular matrix proteoglycan, has been shown to possess potent antitumour activity. However, there is some uncertainty whether different cancer cells express decorin in addition to non-malignant stromal cells. In this study we clarified decorin expression by human bladder cancer cells both in vivo and in vitro. In addition, the effect of adenovirus-mediated decorin expression on human bladder cancer cells in vitro was examined. We first demonstrated using the publicly available GeneSapiens databank that decorin gene expression is present in both normal and malignant human bladder tissues. However, when we applied in situ hybridization with digoxigenin-labeled RNA probes for decorin on human bladder carcinoma tissue samples derived from a large radical cystectomy patient cohort (n = 199), we unambiguously demonstrated that invasive and non-invasive bladder carcinoma cells completely lack decorin mRNA. The cancer cells were also negative for decorin immunoreactivity. Instead, decorin expression was localized solely to original non-malignant stromal areas of bladder tissue. In accordance with the aforementioned results, human bladder cancer cells in vitro were also negative for decorin expression as shown by RT-qPCR analyses. The lack of decorin expression by bladder cancer cells was shown not to be due to the methylation of the proximal promoter region of the decorin gene. When bladder cancer cells were transfected with a decorin adenoviral vector, their proliferation was significantly decreased. In conclusion, we have shown that human bladder cancer cells are totally devoid of decorin expression. We have also shown that adenovirus-mediated decorin gene transduction of human bladder cancer cell lines markedly inhibits their proliferation. Thus, decorin gene delivery offers new potential therapeutic tools in urothelial malignancies.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays.

          Bladder cancer is a common malignancy characterized by a poor clinical outcome when tumors progress into invasive disease. We sought to define genetic signatures characteristic of aggressive clinical behavior in advanced bladder tumors. Oligonucleotide arrays were utilized to analyze the transcript profiles of 105 bladder tumors: 33 superficial, 72 invasive lesions, and 52 normal urothelium. Hierarchical clustering and supervised algorithms were used to classify and stratify bladder tumors on the basis of stage, node metastases, and overall survival. Immunohistochemical analyses on bladder cancer tissue arrays (n = 294 cases) served to validate associations between marker expression, staging and outcome. Hierarchical clustering classified normal urothelium, superficial, and invasive tumors with 82.2% accuracy, and stratified bladder tumors on the basis of clinical outcome. Predictive algorithms rendered an 89%-correct rate for tumor staging using genes differentially expressed between superficial and invasive tumors. Accuracies of 82% and 90% were obtained for predicting overall survival when considering all patients with bladder cancer or only patients with invasive disease, respectively. A genetic profile consisting of 174 probes was identified in those patients with positive lymph nodes and poor survival. Two independent Global Test runs confirmed the robust association of this profile with lymph node metastases (P = 7.3(-13)) and overall survival (P = 1.9(-14)) simultaneously. Immunohistochemical analyses on tissue arrays sustained the significant association of synuclein with tumor staging and clinical outcome (P = .002). Gene profiling provides a genomic-based classification scheme of diagnostic and prognostic utility for stratifying advanced bladder cancer. Identification of this poor outcome profile could assist in selecting patients who may benefit from more aggressive therapeutic intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction.

            The small leucine-rich proteoglycan (SLRP) family has significantly expanded in the past decade to now encompass five discrete classes, grouped by common structural and functional properties. Some of these gene products are not classical proteoglycans, whereas others have new and unique features. In addition to being structural proteins, SLRPs constitute a network of signal regulation: being mostly extracellular, they are upstream of multiple signaling cascades. They affect intracellular phosphorylation, a major conduit of information for cellular responses, and modulate distinct pathways, including those driven by bone morphogenetic protein/transforming growth factor beta superfamily members, receptor tyrosine kinases such as ErbB family members and the insulin-like growth factor I receptor, and Toll-like receptors. The wealth of mechanistic insights into the molecular and cellular functions of SLRPs has revealed both the sophistication of this family of regulatory proteins and the challenges that remain in uncovering the totality of their functions. This review is focused on novel biological functions of SLRPs with special emphasis on their protein cores, newly described genetic diseases, and signaling events in which SLRPs play key functions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta.

              We have analysed the interactions of three proteoglycans of the decorin family, decorin, biglycan and fibromodulin, with transforming growth factor beta (TGF-beta). The proteoglycan core proteins, expressed from human cDNAs as fusion proteins with Escherichia coli maltose-binding protein, each bound TGF-beta 1. They showed only negligible binding to several other growth factors. Intact decorin, biglycan and fibromodulin isolated from bovine tissues competed with the fusion proteins for the TGF-beta binding. Affinity measurements suggest a two-site binding model with Kd values ranging from 1 to 20 nM for a high-affinity binding site and 50 to 200 nM for the lower-affinity binding site. The stoichiometry indicated that the high-affinity binding site was present in one of ten proteoglycan core molecules and that each molecule contained a low-affinity binding site. Tissue-derived biglycan and decorin were less effective competitors for TGF-beta binding than fibromodulin or the non-glycosylated fusion proteins; removal of the chondroitin/dermatan sulphate chains of decorin and biglycan (fibromodulin is a keratan sulphate proteoglycan) increased the activities of decorin and biglycan, suggesting that the glycosaminoglycan chains may hinder the interaction of the core proteins with TGF-beta. The fusion proteins competed for the binding of radiolabelled TGF-beta to Mv 1 Lu cells and endothelial cells. Affinity labelling showed that the binding of TGF-beta to betaglycan and the type-I receptors in Mv 1 Lu cells and to endoglin in endothelial cells was reduced, but the binding to the type-II receptors was unaffected. TGF-beta 2 and 3 also bound to all three fusion proteins. Latent recombinant TGF-beta 1 precursor bound slightly to fibromodulin and not at all to decorin and biglycan. The results show that the three decorin-type proteoglycans each bind TGF-beta isoforms and that slight differences exist in their binding properties. They may regulate TGF-beta activities by sequestering TGF-beta into extracellular matrix.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                11 October 2013
                : 8
                : 10
                : e76190
                Affiliations
                [1 ]Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland
                [2 ]Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
                [3 ]Department of Pathology, University of Turku, Turku, Finland
                [4 ]Division of Medicine, Department of Endocrinology, Turku University Hospital, Turku, Finland
                [5 ]Division of Digestive Surgery and Urology, Department of Urology, Turku University Hospital, Turku, Finland
                INRS, Canada
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AS HJ. Performed the experiments: AS MN PJB RL SV. Analyzed the data: AS MN ML PB PJB RL SV HJ. Contributed reagents/materials/analysis tools: ML PB PJB ML RL SV HJ. Wrote the paper: AS MN HJ.

                Article
                PONE-D-13-24514
                10.1371/journal.pone.0076190
                3795759
                e067c4a4-f2d8-4410-8f8c-eb5f2a8a7378
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 June 2013
                : 23 August 2013
                Page count
                Pages: 8
                Funding
                Financially this study was supported by Medical Research Fund (EVO) of Turku University Hospital, Cancer Foundations of South-Western Finland, Foundation of Ida Montin, Oskar Öflunds Stiftelse, The Finnish Cultural Foundation/Varsinais-Suomi Regional Fund, Biocenter Finland, Academy of Finland, and University of Turku. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article