22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aldehyde Dehydrogenase 1A1: Friend or Foe to Female Metabolism?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this review, we summarize recent advances in understanding vitamin A-dependent regulation of sex-specific differences in metabolic diseases, inflammation, and certain cancers. We focus on the characterization of the aldehyde dehydrogenase-1 family of enzymes (ALDH1A1, ALDH1A2, ALDH1A3) that catalyze conversion of retinaldehyde to retinoic acid. Additionally, we propose a “horizontal transfer of signaling” from estrogen to retinoids through the action of ALDH1A1. Although estrogen does not directly influence expression of Aldh1a1, it has the ability to suppress Aldh1a2 and Aldh1a3, thereby establishing a female-specific mechanism for retinoic acid generation in target tissues. ALDH1A1 regulates adipogenesis, abdominal fat formation, glucose tolerance, and suppression of thermogenesis in adipocytes; in B cells, ALDH1A1 plays a protective role by inducing oncogene suppressors Rara and Pparg. Considering the conflicting responses of Aldh1a1 in a multitude of physiological processes, only tissue-specific regulation of Aldh1a1 can result in therapeutic effects. We have shown through successful implantation of tissue-specific Aldh1a1 −/− preadipocytes that thermogenesis can be induced in wild-type adipose tissues to resolve diet-induced visceral obesity in females. We will briefly discuss the emerging role of ALDH1A1 in multiple myeloma, the regulation of reproduction, and immune responses, and conclude by discussing the role of ALDH1A1 in future therapeutic applications.

          Related collections

          Most cited references119

          • Record: found
          • Abstract: found
          • Article: not found

          Obesity-associated improvements in metabolic profile through expansion of adipose tissue.

          Excess caloric intake can lead to insulin resistance. The underlying reasons are complex but likely related to ectopic lipid deposition in nonadipose tissue. We hypothesized that the inability to appropriately expand subcutaneous adipose tissue may be an underlying reason for insulin resistance and beta cell failure. Mice lacking leptin while overexpressing adiponectin showed normalized glucose and insulin levels and dramatically improved glucose as well as positively affected serum triglyceride levels. Therefore, modestly increasing the levels of circulating full-length adiponectin completely rescued the diabetic phenotype in ob/ob mice. They displayed increased expression of PPARgamma target genes and a reduction in macrophage infiltration in adipose tissue and systemic inflammation. As a result, the transgenic mice were morbidly obese, with significantly higher levels of adipose tissue than their ob/ob littermates, leading to an interesting dichotomy of increased fat mass associated with improvement in insulin sensitivity. Based on these data, we propose that adiponectin acts as a peripheral "starvation" signal promoting the storage of triglycerides preferentially in adipose tissue. As a consequence, reduced triglyceride levels in the liver and muscle convey improved systemic insulin sensitivity. These mice therefore represent what we believe is a novel model of morbid obesity associated with an improved metabolic profile.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome-wide analysis of estrogen receptor binding sites.

            The estrogen receptor is the master transcriptional regulator of breast cancer phenotype and the archetype of a molecular therapeutic target. We mapped all estrogen receptor and RNA polymerase II binding sites on a genome-wide scale, identifying the authentic cis binding sites and target genes, in breast cancer cells. Combining this unique resource with gene expression data demonstrates distinct temporal mechanisms of estrogen-mediated gene regulation, particularly in the case of estrogen-suppressed genes. Furthermore, this resource has allowed the identification of cis-regulatory sites in previously unexplored regions of the genome and the cooperating transcription factors underlying estrogen signaling in breast cancer.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Cloning of a novel receptor expressed in rat prostate and ovary.

                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                03 March 2014
                March 2014
                : 6
                : 3
                : 950-973
                Affiliations
                Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: petrosino.5@ 123456osu.edu (J.M.P.); disilvestro.4@ 123456osu.edu (D.D.)
                Author notes
                [* ] Author to whom correspondence should be addressed; E-Mail: ziouzenkova.1@ 123456osu.edu ; Tel.: +1-614-292-5034.
                Article
                nutrients-06-00950
                10.3390/nu6030950
                3967171
                24594504
                e0739674-5b2a-4d56-aad6-acd6c84db62e
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 26 November 2013
                : 08 February 2014
                : 18 February 2014
                Categories
                Review

                Nutrition & Dietetics
                oestrogen,raldh,alcohol dehydrogenase,lymphotactin,retinoids,tissue factor,pcos,gender differences,esr1,android obesity

                Comments

                Comment on this article