7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Safety and immunogenicity of a high-dose quadrivalent influenza vaccine administered concomitantly with a third dose of the mRNA-1273 SARS-CoV-2 vaccine in adults aged ≥65 years: a phase 2, randomised, open-label study

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Concomitant seasonal influenza vaccination with a COVID-19 vaccine booster could help to minimise potential disruption to the seasonal influenza vaccination campaign and maximise protection against both diseases among individuals at risk of severe disease and hospitalisation. This study aimed to assess the safety and immunogenicity of concomitant administration of high-dose quadrivalent influenza vaccine (QIV-HD) and a mRNA-1273 vaccine booster dose in older adults.

          Methods

          This study is an ongoing, phase 2, multicentre, open-label, descriptive trial at six clinical research sites in the USA. We describe the interim results up to 21 days after vaccination (July–August, 2021). Community-dwelling adults aged 65 years and older, who were previously vaccinated with a two-dose primary schedule of the mRNA-1273 SARS-CoV-2 vaccine, were eligible for inclusion. The second dose of the primary mRNA-1273 vaccination series was required to have been received at least 5 months before enrolment in the study. Participants were randomly assigned (1:1:1) using a permuted block method stratified by site and by age group (<75 years vs ≥75 years), to receive concomitant administration of QIV-HD and mRNA-1273 vaccine, QIV-HD alone, or mRNA-1273 vaccine alone. Randomisation lists, generated by Sanofi Pasteur biostatistics platform, were provided to study investigators for study group allocation. Unsolicited adverse events occurring immediately, solicited local and systemic reactions up to day 8, and unsolicited adverse events, serious adverse events, adverse events of special interest, and medically attended adverse events up to day 22 were reported. Haemagglutination inhibition antibody responses to influenza A/H1N1, A/H3N2, B/Yamagata, and B/Victoria strains and SARS CoV-2 binding antibody responses (SARS-CoV-2 pre-spike IgG ELISA) were assessed at day 1 and day 22. All analyses were descriptive. The study is registered with ClinicalTrials.gov, NCT04969276.

          Findings

          Between July 16 and Aug 31, 2021, 306 participants were enrolled and randomly assigned, of whom 296 received at least one vaccine dose (100 in the coadministration group, 92 in the QIV-HD, and 104 in the mRNA-1273 group). Reactogenicity profiles were similar between the coadministration and mRNA-1273 groups, with lower reactogenicity rates in the QIV-HD group (frequency of solicited injection site reactions 86·0% [95% CI 77·6–92·1], 91·3% [84·2–96·0], and 61·8% [50·9–71·9]; frequency of solicited systemic reactions 80·0%, [70·8–87·3], 83·7% [75·1–90·2], and 49·4% [38·7–60·2], respectively). Up to day 22, unsolicited adverse events were reported for 17·0% (95% CI 10·2–25·8) of participants in the coadministration group and 14·4% (8·3–22·7) of participants in the mRNA-1273 group, and tended to be reported at a slightly lower rate (10·9% [5·3–19·1]) in participants in the QIV-HD group. Seven participants each reported one medically attended adverse event (three in the coadministration group, one in the QIV-HD group, and three in the mRNA-1273 group). There were no serious adverse events, adverse events of special interest, or deaths. Haemagglutination inhibition antibody geometric mean titres increased from day 1 to day 22 to similar levels in the coadministration and QIV-HD groups, for each influenza strain (A/H1N1: 363 [95% CI 276–476] vs 366 [272–491]; A/H3N2: 286 [233–352] vs 315 [257–386]; B/Yamagata: 429 [350–525] vs 471 [378–588]; B/Victoria: 377 [325–438] vs 390 [327–465] for the coadministration and QIV-HD groups, respectively). SARS-CoV-2 binding antibody geometric mean concentrations also increased to similar levels in the coadministration and mRNA-1273 groups at day 22 (7634 [95% CI 6445–9042] and 7904 [6883–9077], respectively).

          Interpretation

          No safety concerns or immune interference were observed for concomitant administration of QIV-HD with mRNA-1273 booster in adults aged 65 years and older, supporting co-administration recommendations.

          Funding

          Sanofi Pasteur.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine

          Abstract Background Vaccines are needed to prevent coronavirus disease 2019 (Covid-19) and to protect persons who are at high risk for complications. The mRNA-1273 vaccine is a lipid nanoparticle–encapsulated mRNA-based vaccine that encodes the prefusion stabilized full-length spike protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes Covid-19. Methods This phase 3 randomized, observer-blinded, placebo-controlled trial was conducted at 99 centers across the United States. Persons at high risk for SARS-CoV-2 infection or its complications were randomly assigned in a 1:1 ratio to receive two intramuscular injections of mRNA-1273 (100 μg) or placebo 28 days apart. The primary end point was prevention of Covid-19 illness with onset at least 14 days after the second injection in participants who had not previously been infected with SARS-CoV-2. Results The trial enrolled 30,420 volunteers who were randomly assigned in a 1:1 ratio to receive either vaccine or placebo (15,210 participants in each group). More than 96% of participants received both injections, and 2.2% had evidence (serologic, virologic, or both) of SARS-CoV-2 infection at baseline. Symptomatic Covid-19 illness was confirmed in 185 participants in the placebo group (56.5 per 1000 person-years; 95% confidence interval [CI], 48.7 to 65.3) and in 11 participants in the mRNA-1273 group (3.3 per 1000 person-years; 95% CI, 1.7 to 6.0); vaccine efficacy was 94.1% (95% CI, 89.3 to 96.8%; P<0.001). Efficacy was similar across key secondary analyses, including assessment 14 days after the first dose, analyses that included participants who had evidence of SARS-CoV-2 infection at baseline, and analyses in participants 65 years of age or older. Severe Covid-19 occurred in 30 participants, with one fatality; all 30 were in the placebo group. Moderate, transient reactogenicity after vaccination occurred more frequently in the mRNA-1273 group. Serious adverse events were rare, and the incidence was similar in the two groups. Conclusions The mRNA-1273 vaccine showed 94.1% efficacy at preventing Covid-19 illness, including severe disease. Aside from transient local and systemic reactions, no safety concerns were identified. (Funded by the Biomedical Advanced Research and Development Authority and the National Institute of Allergy and Infectious Diseases; COVE ClinicalTrials.gov number, NCT04470427.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data

            Background Following the emergency use authorisation of the Pfizer–BioNTech mRNA COVID-19 vaccine BNT162b2 (international non-proprietary name tozinameran) in Israel, the Ministry of Health (MoH) launched a campaign to immunise the 6·5 million residents of Israel aged 16 years and older. We estimated the real-world effectiveness of two doses of BNT162b2 against a range of SARS-CoV-2 outcomes and to evaluate the nationwide public-health impact following the widespread introduction of the vaccine. Methods We used national surveillance data from the first 4 months of the nationwide vaccination campaign to ascertain incident cases of laboratory-confirmed SARS-CoV-2 infections and outcomes, as well as vaccine uptake in residents of Israel aged 16 years and older. Vaccine effectiveness against SARS-CoV-2 outcomes (asymptomatic infection, symptomatic infection, and COVID-19-related hospitalisation, severe or critical hospitalisation, and death) was calculated on the basis of incidence rates in fully vaccinated individuals (defined as those for whom 7 days had passed since receiving the second dose of vaccine) compared with rates in unvaccinated individuals (who had not received any doses of the vaccine), with use of a negative binomial regression model adjusted for age group (16–24, 25–34, 35–44, 45–54, 55–64, 65–74, 75–84, and ≥85 years), sex, and calendar week. The proportion of spike gene target failures on PCR test among a nationwide convenience-sample of SARS-CoV-2-positive specimens was used to estimate the prevelance of the B.1.1.7 variant. Findings During the analysis period (Jan 24 to April 3, 2021), there were 232 268 SARS-CoV-2 infections, 7694 COVID-19 hospitalisations, 4481 severe or critical COVID-19 hospitalisations, and 1113 COVID-19 deaths in people aged 16 years or older. By April 3, 2021, 4 714 932 (72·1%) of 6 538 911 people aged 16 years and older were fully vaccinated with two doses of BNT162b2. Adjusted estimates of vaccine effectiveness at 7 days or longer after the second dose were 95·3% (95% CI 94·9–95·7; incidence rate 91·5 per 100 000 person-days in unvaccinated vs 3·1 per 100 000 person-days in fully vaccinated individuals) against SARS-CoV-2 infection, 91·5% (90·7–92·2; 40·9 vs 1·8 per 100 000 person-days) against asymptomatic SARS-CoV-2 infection, 97·0% (96·7–97·2; 32·5 vs 0·8 per 100 000 person-days) against symptomatic COVID-19, 97·2% (96·8–97·5; 4·6 vs 0·3 per 100 000 person-days) against COVID-19-related hospitalisation, 97·5% (97·1–97·8; 2·7 vs 0·2 per 100 000 person-days) against severe or critical COVID-19-related hospitalisation, and 96·7% (96·0–97·3; 0·6 vs 0·1 per 100 000 person-days) against COVID-19-related death. In all age groups, as vaccine coverage increased, the incidence of SARS-CoV-2 outcomes declined. 8006 of 8472 samples tested showed a spike gene target failure, giving an estimated prevalence of the B.1.1.7 variant of 94·5% among SARS-CoV-2 infections. Interpretation Two doses of BNT162b2 are highly effective across all age groups (≥16 years, including older adults aged ≥85 years) in preventing symptomatic and asymptomatic SARS-CoV-2 infections and COVID-19-related hospitalisations, severe disease, and death, including those caused by the B.1.1.7 SARS-CoV-2 variant. There were marked and sustained declines in SARS-CoV-2 incidence corresponding to increasing vaccine coverage. These findings suggest that COVID-19 vaccination can help to control the pandemic. Funding None.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Estimates of global seasonal influenza-associated respiratory mortality: a modelling study

              Estimates of influenza-associated mortality are important for national and international decision making on public health priorities. Previous estimates of 250 000-500 000 annual influenza deaths are outdated. We updated the estimated number of global annual influenza-associated respiratory deaths using country-specific influenza-associated excess respiratory mortality estimates from 1999-2015.
                Bookmark

                Author and article information

                Journal
                Lancet Respir Med
                Lancet Respir Med
                The Lancet. Respiratory Medicine
                Elsevier Ltd.
                2213-2600
                2213-2619
                1 February 2022
                1 February 2022
                Affiliations
                [a ]Sanofi Pasteur, Swiftwater, PA, USA
                [b ]Accelerated Enrollment Solutions, Peoria, IL, USA
                [c ]Sanofi Pasteur, Marcy l'Etoile, France
                [d ]Sanofi Pasteur, Lyon, France
                Author notes
                [* ]Correspondence to: Dr Ruvim Izikson, Sanofi Pasteur, Swiftwater, PA 18370, USA
                Article
                S2213-2600(21)00557-9
                10.1016/S2213-2600(21)00557-9
                8803382
                35114141
                e097798b-56b0-42f2-901f-71d808e0457a
                © 2021 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Articles

                Comments

                Comment on this article