8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ultrasensitive Automated RNA in situ Hybridization for Kappa and Lambda Light Chain mRNA Detects B-cell Clonality in Tissue Biopsies with Performance Comparable or Superior to Flow Cytometry

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The assessment of B-cell clonality is a critical component of the evaluation of suspected lymphoproliferative disorders, but analysis from formalin fixed paraffin embedded tissues can be challenging if fresh tissue is not available for flow cytometry. Immunohistochemical and conventional bright field in situ hybridization stains for kappa and lambda are effective for evaluation of plasma cells, but are often insufficiently sensitive to detect the much lower abundance of light chains present in B cells. We describe an ultrasensitive RNA in situ hybridization assay which has been adapted for use on an automated immunohistochemistry platform and compare results with flow cytometry in 203 consecutive tissues and 104 consecutive bone marrows. Overall, in 203 tissue biopsies, RNA in situ hybridization identified light chain restricted B-cells in 85 (42%) vs. 58 (29%) by flow cytometry. Within 83 B-cell non-Hodgkin lymphomas, RNA in situ hybridization identified a restricted B-cells in 74 (89%) vs. 56 (67%) by flow cytometry. B-cell clonality could be evaluated in only 23/104 (22%) bone marrow cases due to poor RNA preservation, but evaluable cases showed 91% concordance with flow cytometry. RNA in situ hybridization allowed for recognition of biclonal/composite lymphomas not identified by flow cytometry, and highlighted unexpected findings, such as coexpression of kappa and lambda RNA in 2 cases and the presence of lambda light chain RNA in a T lymphoblastic lymphoma. Automated RNA in situ hybridization showed excellent interobserver reproducibility for manual evaluation (average K=0.92), and an automated image analysis system showed high concordance (97%) with manual evaluation. Automated RNA in situ hybridization staining, which can be adopted on commonly utilized immunohistochemistry instruments, allows for the interpretation of clonality in the context of the morphologic features in formalin fixed, paraffin embedded tissues with a clinical sensitivity similar or superior to flow cytometry.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Flow cytometric immunophenotyping for hematologic neoplasms.

          Flow cytometric immunophenotyping remains an indispensable tool for the diagnosis, classification, staging, and monitoring of hematologic neoplasms. The last 10 years have seen advances in flow cytometry instrumentation and availability of an expanded range of antibodies and fluorochromes that have improved our ability to identify different normal cell populations and recognize phenotypic aberrancies, even when present in a small proportion of the cells analyzed. Phenotypically abnormal populations have been documented in many hematologic neoplasms, including lymphoma, chronic lymphoid leukemias, plasma cell neoplasms, acute leukemia, paroxysmal nocturnal hemoglobinuria, mast cell disease, myelodysplastic syndromes, and myeloproliferative disorders. The past decade has also seen refinement of the criteria used to identify distinct disease entities with widespread adoption of the 2001 World Health Organization (WHO) classification. This classification endorses a multiparametric approach to diagnosis and outlines the morphologic, immunophenotypic, and genotypic features characteristic of each disease entity. When should flow cytometric immunophenotyping be applied? The recent Bethesda International Consensus Conference on flow cytometric immunophenotypic analysis of hematolymphoid neoplasms made recommendations on the medical indications for flow cytometric testing. This review discusses how flow cytometric testing is currently applied in these clinical situations and how the information obtained can be used to direct other testing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Detection of transcriptionally active high-risk HPV in patients with head and neck squamous cell carcinoma as visualized by a novel E6/E7 mRNA in situ hybridization method.

            Evidence for transcriptional activation of the viral oncoproteins E6 and E7 is regarded as the gold standard for the presence of clinically relevant human papillomavirus (HPV), but detection of E6/E7 mRNA requires RNA extraction and polymerase chain reaction amplification-a challenging technique that is restricted to the research laboratory. The development of RNA in situ hybridization (ISH) probes complementary to E6/E7 mRNA permits direct visualization of viral transcripts in routinely processed tissues and has opened the door for accurate HPV detection in the clinical care setting. Tissue microarrays containing 282 head and neck squamous cell carcinomas from various anatomic subsites were tested for the presence of HPV using p16 immunohistochemistry, HPV DNA ISH, and an RNA ISH assay (RNAscope) targeting high-risk HPV E6/E7 mRNA transcripts. The E6/E7 mRNA assay was also used to test an additional 25 oropharyngeal carcinomas in which the HPV status as recorded in the surgical pathology reports was equivocal due to conflicting detection results (ie, p16 positive, DNA ISH negative). By the E6/E7 mRNA method, HPV was detected in 49 of 282 (17%) HNSCCs including 43 of 77 (56%) carcinomas from the oropharynx, 2 of 3 (67%) metastatic HNSCCs of an unknown primary site, 2 of 7 (29%) carcinomas from the sinonasal tract, and 2 of 195 (1%) carcinomas from other head and neck sites. p16 expression was strongly associated with the presence of HPV E6/E7 mRNA: 46 of 49 HPV-positive tumors exhibited p16 expression, whereas only 22 of 233 HPV-negative tumors were p16 positive (94% vs. 9%, P<0.0001). There was also a high rate of concordance (99%) between the E6/E7 mRNA method and HPV DNA ISH. For the selected group of discordant HNSCCs (p16/HPV DNA), the presence of E6/E7 transcripts was detected in 21 of 25 (84%) cases. The E6/E7 mRNA method confirmed the presence of transcriptionally active HPV-related HNSCC that has a strong predilection for the oropharynx and is strongly associated with high levels of p16 expression. Testing for HPV E6/E7 transcripts by RNA ISH is ideal because it confirms the presence of integrated and transcriptionally active virus, permits visualization of viral transcripts in tissues, and is technically feasible for routine testing in the clinical laboratory.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-risk human papillomavirus E6/E7 mRNA detection by a novel in situ hybridization assay strongly correlates with p16 expression and patient outcomes in oropharyngeal squamous cell carcinoma.

              Human papillomavirus (HPV) is established as causative in oropharyngeal squamous cell carcinomas (OSCCs), being detected in 50% to 80% of tumors by DNA in situ hybridization (ISH) and/or polymerase chain reaction. However, these tests do not assess viral transcription. Many consider E6/E7 messenger ribonucleic acid (mRNA) the best indicator of HPV status, but it has not been detected in situ in OSCC. We constructed tissue microarrays (TMAs) from a cohort of OSCC for which p16 immunohistochemistry and HPV DNA ISH were previously performed on whole sections. We utilized a novel, chromogenic RNA ISH assay called RNAscope to detect E6/E7 mRNA of HPV-16 and other high-risk types on these TMAs. RNA ISH results were obtained for 196 of 211 TMA cases, of which 153 (78.1%) were positive. p16 immunohistochemistry and HPV DNA ISH were positive in 79.0% and 62.4% of cases, respectively. Concordance between RNA and p16, DNA and p16, and RNA and DNA were 96.4%, 78.7%, and 83.5%, respectively. Only 7 cases (3.6%) were discrepant between RNA ISH and p16. In univariate analysis, all 3 tests correlated with better overall survival (OS), disease-specific survival (DSS), and disease-free survival (DFS) (all P<0.001). In multivariate analysis, OS correlated significantly with RNA (hazard ratio=0.39, P=0.001), DNA (0.53, P=0.03), and p16 (0.30, P<0.001), but DSS and DFS correlated significantly only with p16 (DSS: 0.36, P=0.006; DFS: 0.42, P=0.016). RNA ISH is more sensitive than DNA ISH in detecting HPV in OSCC, and it correlates strongly with p16. Although both tests were comparable, p16 more strongly stratified patient outcomes.
                Bookmark

                Author and article information

                Journal
                8806605
                6644
                Mod Pathol
                Mod. Pathol.
                Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
                0893-3952
                1530-0285
                3 September 2017
                20 October 2017
                March 2018
                20 April 2018
                : 31
                : 3
                : 385-394
                Affiliations
                [1 ]Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
                [2 ]Advanced Cell Diagnostics, Newark, CA
                Author notes
                Corresponding Author: James R. Cook MD, PhD, Department of Laboratory Medicine, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, Cookj2@ 123456ccf.org , (216) 444-4435
                Article
                NIHMS903555
                10.1038/modpathol.2017.142
                5843495
                29052600
                e0d9ad2a-9385-4ce9-91c9-1a1a061ecf13

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Pathology
                light chain restriction,b-cell lymphoma,cish,rna in situ hybridization,rnascope
                Pathology
                light chain restriction, b-cell lymphoma, cish, rna in situ hybridization, rnascope

                Comments

                Comment on this article