12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Best Basis Selection Method Using Learning Weights for Face Recognition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the face recognition field, principal component analysis is essential to the reduction of the image dimension. In spite of frequent use of this analysis, it is commonly believed that the basis faces with large eigenvalues are chosen as the best subset in the nearest neighbor classifiers. We propose an alternative that can predict the classification error during the training steps and find the useful basis faces for the similarity metrics of the classical pattern algorithms. In addition, we also show the need for the eye-aligned dataset to have the pure face. The experiments using face images verify that our method reduces the negative effect on the misaligned face images and decreases the weights of the useful basis faces in order to improve the classification accuracy.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Acquiring linear subspaces for face recognition under variable lighting.

          Previous work has demonstrated that the image variation of many objects (human faces in particular) under variable lighting can be effectively modeled by low-dimensional linear spaces, even when there are multiple light sources and shadowing. Basis images spanning this space are usually obtained in one of three ways: A large set of images of the object under different lighting conditions is acquired, and principal component analysis (PCA) is used to estimate a subspace. Alternatively, synthetic images are rendered from a 3D model (perhaps reconstructed from images) under point sources and, again, PCA is used to estimate a subspace. Finally, images rendered from a 3D model under diffuse lighting based on spherical harmonics are directly used as basis images. In this paper, we show how to arrange physical lighting so that the acquired images of each object can be directly used as the basis vectors of a low-dimensional linear space and that this subspace is close to those acquired by the other methods. More specifically, there exist configurations of k point light source directions, with k typically ranging from 5 to 9, such that, by taking k images of an object under these single sources, the resulting subspace is an effective representation for recognition under a wide range of lighting conditions. Since the subspace is generated directly from real images, potentially complex and/or brittle intermediate steps such as 3D reconstruction can be completely avoided; nor is it necessary to acquire large numbers of training images or to physically construct complex diffuse (harmonic) light fields. We validate the use of subspaces constructed in this fashion within the context of face recognition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Linear regression for face recognition.

            In this paper, we present a novel approach of face identification by formulating the pattern recognition problem in terms of linear regression. Using a fundamental concept that patterns from a single-object class lie on a linear subspace, we develop a linear model representing a probe image as a linear combination of class-specific galleries. The inverse problem is solved using the least-squares method and the decision is ruled in favor of the class with the minimum reconstruction error. The proposed Linear Regression Classification (LRC) algorithm falls in the category of nearest subspace classification. The algorithm is extensively evaluated on several standard databases under a number of exemplary evaluation protocols reported in the face recognition literature. A comparative study with state-of-the-art algorithms clearly reflects the efficacy of the proposed approach. For the problem of contiguous occlusion, we propose a Modular LRC approach, introducing a novel Distance-based Evidence Fusion (DEF) algorithm. The proposed methodology achieves the best results ever reported for the challenging problem of scarf occlusion.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              On Using Principal Components Before Separating a Mixture of Two Multivariate Normal Distributions

                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                Sensors (Basel, Switzerland)
                Molecular Diversity Preservation International (MDPI)
                1424-8220
                October 2013
                25 September 2013
                : 13
                : 10
                : 12830-12851
                Affiliations
                [1 ] The School of Electrical and Electronic Engineering, Yonsei University, 134 Shinchon-Dong, Seodaemun-Gu, Seoul 120-749, Korea; E-Mails: delicado@ 123456yonsei.ac.kr (W.L.); 1000minkyu@ 123456gmail.com (M.C.); mignpark@ 123456yonsei.ac.kr (M.P.)
                [2 ] The School of Electrical Electronic and Control Engineering, Kongju National University, 275 Budae-Dong, Seobuk-Gu, Cheonan, Chungnam 331-717, Korea
                Author notes
                [* ] Author to whom correspondence should be addressed; E-Mail: hyunch@ 123456kongju.ac.kr ; Tel.: +82-41-521-9168; Fax: +82-41-563-3689.
                Article
                sensors-13-12830
                10.3390/s131012830
                3859039
                24072026
                e0e3c835-a69d-428f-bbed-178484e84458
                © 2013 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 24 July 2013
                : 26 August 2013
                : 16 September 2013
                Categories
                Article

                Biomedical engineering
                feature selection,similarity metrics,learning weights
                Biomedical engineering
                feature selection, similarity metrics, learning weights

                Comments

                Comment on this article