7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Review of Molecular and Mechanical Interactions in the Aortic Valve and Aorta: Implications for the Shared Pathogenesis of Aortic Valve Disease and Aortopathy

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references203

          • Record: found
          • Abstract: not found
          • Article: not found

          2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with Thoracic Aortic Disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutations in NOTCH1 cause aortic valve disease.

            Calcification of the aortic valve is the third leading cause of heart disease in adults. The incidence increases with age, and it is often associated with a bicuspid aortic valve present in 1-2% of the population. Despite the frequency, neither the mechanisms of valve calcification nor the developmental origin of a two, rather than three, leaflet aortic valve is known. Here, we show that mutations in the signalling and transcriptional regulator NOTCH1 cause a spectrum of developmental aortic valve anomalies and severe valve calcification in non-syndromic autosomal-dominant human pedigrees. Consistent with the valve calcification phenotype, Notch1 transcripts were most abundant in the developing aortic valve of mice, and Notch1 repressed the activity of Runx2, a central transcriptional regulator of osteoblast cell fate. The hairy-related family of transcriptional repressors (Hrt), which are activated by Notch1 signalling, physically interacted with Runx2 and repressed Runx2 transcriptional activity independent of histone deacetylase activity. These results suggest that NOTCH1 mutations cause an early developmental defect in the aortic valve and a later de-repression of calcium deposition that causes progressive aortic valve disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of the early lesion of 'degenerative' valvular aortic stenosis. Histological and immunohistochemical studies.

              Nonrheumatic stenosis of trileaflet aortic valves, often termed senile or calcific valvular aortic stenosis, is considered a "degenerative" process, but little is known about the cellular or molecular factors that mediate its development. To characterize the developing aortic valvular lesion, we performed histological and immunohistochemical studies on Formalin-fixed and methanol-Carnoy's-fixed paraffin-embedded aortic valve leaflets or on frozen sections obtained at autopsy from 27 adults (age, 46 to 82 years) with normal leaflets (n = 6), mild macroscopic leaflet thickening (n = 15), or clinical aortic stenosis (n = 6). Focal areas of thickening ("early lesions") were characterized by (1) subendothelial thickening on the aortic side of the leaflet, between the basement membrane (PAS-positive) and elastic lamina (Verhoeff-van Gieson), (2) the presence of large amounts of intracellular and extracellular neutral lipids (oil red O) and fine, stippled mineralization (von Kossa), and (3) disruption of the basement membrane overlying the lesion. Regions of the fibrosa adjacent to these lesions were characterized by thickening and by protein, lipid, and calcium accumulation. Control valves showed none of these abnormalities. Immunohistochemical studies were performed using monoclonal antibodies directed against macrophages (anti-CD68 or HAM-56), and contractile proteins of smooth muscle cells or myofibroblasts (anti-alpha-actin and HHF-35) or rabbit polyclonal antiserum against T lymphocytes (anti-CD3). In normal valves, scattered macrophages were present in the fibrosa and ventricularis, and occasional muscle actin-positive cells were detected in the proximal portion of the ventricularis near the leaflet base, but no T lymphocytes were found. In contrast, early lesions were characterized by the presence of an inflammatory infiltrate composed of non-foam cell and foam cell macrophages, occasional T cells, and rare alpha-actin-positive cells. In stenotic aortic valves, a similar but more advanced lesion was seen. The early lesion of "degenerative" aortic stenosis is an active inflammatory process with some similarities (lipid deposition, macrophage and T-cell infiltration, and basement membrane disruption) and some dissimilarities (presence of prominent mineralization and small numbers of smooth muscle cells) to atherosclerosis.
                Bookmark

                Author and article information

                Journal
                Journal of Cardiovascular Translational Research
                J. of Cardiovasc. Trans. Res.
                Springer Nature
                1937-5387
                1937-5395
                December 2014
                November 20 2014
                December 2014
                : 7
                : 9
                : 823-846
                Article
                10.1007/s12265-014-9602-4
                e186baa8-e8e7-49c2-9b5c-7514e8d3704c
                © 2014
                History

                Comments

                Comment on this article